Filters
total: 1972
displaying 1000 best results Help
Search results for: loyalty of y generation
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
All About Economy Film Meeting
EventsNa Wydziale Zarządzania i Ekonomii PG odbędzie się II edycja międzynarodowego "ECONOMY FILM MEETING" – festiwal starannie wyselekcjonowanych filmów ekonomicznych z naukowym komentarzem.
-
Lipopeptides - synthesis and their properties
PublicationZaprezentowano syntezę nowych pochodnych tripeptydu Gly-Hyp-Lys o potencjalnie lepszych właściwościach lipofilowych. Modyfikacje polegały na acylowaniu N-końca glicyny kwasami tłuszczowymi (np. palmitynowym i stearynowym). Syntezę lipopeptydów zawierających fragment Gly-X-Y (gdzie: X= Met,Hyp,Hyp-Met,Gly-Hyp; Y=Lys,D-Lys) przeprowadzono na fazie stałej z zastosowaniem procedury Fmoc. Do wydłużanie łańcucha peptydowego zastosowano...
-
Procognitive activity of nitric oxide inhibitors and donors in animal models
PublicationNitric oxide is a small gaseous molecule that plays important roles in the majority of biological functions. Impairments of NO-related pathways contribute to the majority of neurological disorders, such as Alzheimer’s disease (AD), and mental disorders, such as schizophrenia. Cognitive decline is one of the most serious impairments accompanying both AD and schizophrenia. In the present study, the activities of NO donors, slow (spermine...
-
Jakub Szczepański prof. dr hab. inż. arch.
PeopleJakub Szczepanski is an Associate Professor at the Faculty of Architecture, Gdańsk University of Technology and since 2016 a Vice-Dean for Scientific Research. Architect, historian of architecture and monuments’ conservator. His research focused on the history of both Gdańsk and Baltric Sea cities’ architecture as well as monuments’ conservation and the contemporary problems of cities. Parallelly with the academic work on the GUT,...
-
Towards an experience based collective computational intelligence for manufacturing
PublicationKnowledge based support can play a vital role not only in the new fast emerging information and communication technology based industry, but also in traditional manufacturing. In this regard, several domain specific research endeavors have taken place in the past with limited success. Thus, there is a need to develop a flexible domain independent mechanism to capture, store, reuse, and share manufacturing knowledge. Consequently,...
-
Miniatura 2023 Stability and failure mechanism tests of a plate girder with a Y-shaped web
ProjectsProject realized in Department of Building Engineering according to 2023/07/X/ST8/00613 agreement
-
Daniel Gromadzki Phd., Eng., Assistant Professor dr inż.
PeopleDr. Daniel Gromadzki, PhD, is specializing in polymer chemistry, biomaterials, and sustainable technologies. He earned his PhD in Macromolecular Chemistry from the Academy of Sciences of the Czech Republic and Charles University in Prague, solidifying his expertise in advanced polymer synthesis and applications. Fluent in multiple languages, including Polish, English, German, Czech and French, Dr. Gromadzki is a global academic...
-
Annual signals observed in regional GPS networks
PublicationAbstract: This paper describes analyses concerning annual signals in GPS-derived coordinates. The data was processed in the Military University of Technology Local Analysis Centre with Bernese 5.0 software. We used observations from 129 permanent GPS stations which belong to the Polish Active Geodetic Network (ASG-EUPOS), for the period of GPS weeks 1465-1729, corresponding to about 5 years. The annual signals have been estimated...
-
Photoresponsive, amide-based derivative of embonic acid for anion recognition
PublicationThe synthesis and ion-binding properties of amide-based derivative of embonic acid andp-aminoazobenzenewere described. The new compound was characterized by X-ray structural analysis and spectroscopic methods.Ligand interacts in acetonitrile with Y-shaped anions (benzoates and acetates) and dihydrogen phosphatesforming complexes of 1:1 stoichiometry. In more polar DMSO the complexes stoichiometry changes to 2:1(L:anion). Light-inducedtranstocisisomerization...
-
The Effect of Online Reviews on Consumer-Based Brand Equity: Case-Study of the Polish Restaurant Sector
PublicationPurpose: This paper focuses on the effects of positive and negative online reviews (eWOM) on the metrics of consumer-based brand equity (CBBE) in the context of the Polish restaurant sector. Methodology: The dedicated online survey was completed by 777 consumers, which we then analyzed with structural equation modeling. Each catering outlet was to allow to order meals online. We used descriptive analysis, confirmatory factor analysis,...
-
Synthesis, spectroscopy and computational studies of some novelphosphorylated derivatives of quinoline-5,8-diones
PublicationThe neutral phosphorus nucleophiles such as R2P(=Y)M allowed the radical addition to 2-methyl-5,8-dioxo-5,8-dihydroquinoline-7-amine and N-(2-methyl-5,8-dioxo-5,8-dihydroquinolin-7-yl)acetamide giving exclusively O-phosphorylated products. All products were quantitatively prepared and characterized by microanalysis, and multinuclear NMR spectroscopy. Seven of them, have been characterized by single crystal X-ray diffraction method....
-
Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques.
PublicationW pracy przedstawiono możliwości wykorzystania optycznej tomografii koherencyjnej (OCT), spektroskopii fotoakustycznej (PAS)i spektroskopii czasu przelotu (TOF) w pomiarach glukozy w ośrodku silnie rozpraszającym. Równolegle opracowano modele propagacji światła w tych ośrodkach wykorzystując metodę Monte Carlo. W pomiarach wykorzystano ''Intralipid'' jako fantom tkanki. W dalszych badaniach wykorzystano mięso wieprzowe i dokonano...
-
The vortex flow caused by sound in a bubbly liquid
PublicationGeneration of vorticity in the field of intense sound in a bubbly liquid in the free half-space is considered. The reasons for generation of vorticity are nonlinearity, diffraction, and dispersion. Acoustic streaming differs from that in a Newtonian fluid. Under some conditions, the vortex flow changes its direction. Conclusions concern streaming induced by a harmonic or an impulse Gaussian beam.
-
Evidence for SrHo2O4 and SrDy2O4 as model J1- J2 zigzag chain materials
PublicationNeutron diffraction and inelastic spectroscopy is used to characterize the magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of the crystal-field levels we find site-dependent anisotropic single-ion magnetism in both materials, and diffraction measurements show the presence of strong one-dimensional spin correlations.Our measurements indicate that competing interactions of the zigzag chain, combinedwith...
-
Terahertz magnetospectroscopy of pseudo-relativistic fermions in HgCdTe alloys under hydrostatic pressure
Publication -
Theorie und Kritik der Kultur und Literatur / Teoría y Crítica de la Cultura y Literatura / Theory and Criticism of Culture and Literature / Théorie et Critique de la Culture et Littérature
Journals -
Peripheral device for marking eye artifacts in the EEG examination
PublicationUrządzenie peryferyjne do oznaczania artefaktów ocznych w badaniu EEG (43) Zgłoszenie ogłoszono: 21.05.2018 BUP 11/18 (45) O udzieleniu patentu ogłoszono: 15.06.2020 WUP 07/20 (73) Uprawniony z patentu: ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL (72) Twórca(y) wynalazku: JOANNA GÓRECKA, Stargard, PL ANDRZEJ BIEDKA, Wołczkowo, PL (74) Pełnomocnik: rzecz. pat. Renata Zawadzka PL 235263 B1
-
Ingenium-Revista Electronica de Pensamiento Moderno y Metodologia en Historia de la Ideas
Journals -
Journal of Work and Organizational Psychology-Revista de Psicologia del Trabajo y de las Organizaciones
Journals -
Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-Matematicas
Journals -
Immunological response of sheep to injections of plasmids encoding Toxoplasma gondii SAG1 and ROP1 genes
PublicationInfection with the intracellular protozoan parasite Toxo¬plasma gondii (T. gondii) causes health problems to both humans and livestock and has a large economic impact worldwide. The immune response in sheep following infection with T. gondii was evaluated using six different combinations of plasmid DNA, recombinant antigen and adjuvant. Sheep were generally vaccinated twice by intramuscular injection with plasmid DNA containing...
-
Investigation of tracking systems properties in CAVE-type virtual reality systems
PublicationIn recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The...
-
Traffic Modeling in IMS-based NGN Networks
PublicationIn the modern world the need for accurate and quickly delivered information is becoming more and more essential. In order to fulfill these requirements, next generation telecommunication networks should be fast introduced and correctly dimensioned. For this reason proper traffic models must be identified, which is the subject of this paper. In the paper standardization of IMS (IP Multimedia Subsystem) concept and IMS-based NGN...
-
Company Culture, Knowledge Sharing and Organizational Performance. The Employee’s Perspective
PublicationKnowledge sharing, as a basic prerequisite for knowledge creation, is a dynamic social process characterized by profound human interactions. The process of knowledge sharing can be supported by organizational culture which is a set of values and norms giving identity to each enterprise. As a valuable element of intellectual capital, organizational culture contributes to achieving strategic business goals. The purpose of this article...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.