Search results for: (1,2)-DOMINATING SET - Bridge of Knowledge

Search

Search results for: (1,2)-DOMINATING SET

Search results for: (1,2)-DOMINATING SET

  • On proper (1,2)‐dominating sets in graphs

    Publication

    In 2008, Hedetniemi et al. introduced the concept of (1,)-domination and obtained some interesting results for (1,2) -domination. Obviously every (1,1) -dominating set of a graph (known as 2-dominating set) is (1,2) -dominating; to distinguish these concepts, we define a proper (1,2) -dominating set of a graph as follows: a subset is a proper (1,2) -dominating set of a graph if is (1,2) -dominating and it is not a (1,1) -dominating...

    Full text to download in external service

  • Polynomial Algorithm for Minimal (1,2)-Dominating Set in Networks

    Publication

    - Electronics - Year 2022

    Dominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-dominating set in a graph G=(V,E) if every node not in D is adjacent to a node in D and is also at most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault tolerance and provide a higher reliability of services in case of failure. However, finding such the smallest set is NP-hard. In this paper, we...

    Full text available to download

  • An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...

    Full text to download in external service

  • Total domination in versus paired-domination in regular graphs

    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...

    Full text available to download

  • Non-isolating 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....

    Full text available to download

  • Independent Domination Subdivision in Graphs

    Publication

    - GRAPHS AND COMBINATORICS - Year 2021

    A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...

    Full text available to download

  • On trees attaining an upper bound on the total domination number

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...

    Full text to download in external service

  • All graphs with paired-domination number two less than their order

    Publication

    Let G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...

    Full text available to download

  • Complexity Issues on of Secondary Domination Number

    Publication

    - ALGORITHMICA - Year 2023

    In this paper we study the computational complexity issues of the problem of secondary domination (known also as (1, 2)-domination) in several graph classes. We also study the computational complexity of the problem of determining whether the domination and secondary domination numbers are equal. In particular, we study the influence of triangles and vertices of degree 1 on these numbers. Also, an optimal algorithm for finding...

    Full text available to download

  • angielski

    Publication

    - Australasian Journal of Combinatorics - Year 2024

    A subset D of V (G) is a dominating set of a graph G if every vertex of V (G) − D has at least one neighbour in D; let the domination number γ(G) be the minimum cardinality among all dominating sets in G. We say that a graph G is γ-q-critical if subdividing any q edges results in a graph with domination number greater than γ(G) and there exists a set of q − 1 edges such that subdividing these edges results in a graph with domination...

    Full text available to download

  • Minimal 2-dominating sets in Trees

    We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3247^n). This leads to that every tree has at most 1.3247^n minimal 2-dominating sets. We also show that thisbound is tight.

    Full text to download in external service

  • An Algorithm for Listing All Minimal 2-Dominating Sets of a Tree

    We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3248n) . This implies that every tree has at most 1.3248 n minimal 2-dominating sets. We also show that this bound is tigh.

    Full text available to download

  • On trees with equal 2-domination and 2-outer-independent domination numbers

    For a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...

    Full text available to download

  • On the ratio between 2-domination and total outer-independent domination numbers of trees

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...

    Full text to download in external service

  • On trees with double domination number equal to 2-outer-independent domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...

    Full text to download in external service

  • Total Domination Versus Domination in Cubic Graphs

    Publication

    A dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...

    Full text available to download

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Full text to download in external service

  • Global defensive secure structures

    Publication

    Let S ⊂ V (G) for a given simple non-empty graph G. We define for any nonempty subset X of S the predicate SECG,S(X) = true iff |NG[X]∩S| ≥ |NG[X]\S|. Let H be a non-empty family of graphs such that for each vertex v ∈ V (G) there is a subgraph H of G containing v and isomorphic to a member of H. We introduce the concept of H-alliance extending the concept of global defensive secure structures. By an H-alliance in a graph G we...

    Full text to download in external service

  • An upper bound on the 2-outer-independent domination number of a tree

    Publication

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Full text to download in external service

  • 2-outer-independent domination in graphs

    Publication

    We initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...

    Full text available to download

  • Weakly connected Roman domination in graphs

    Publication

    A Roman dominating function on a graph G=(V,E) is defined to be a function f :V → {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v)=2. A dominating set D⊆V is a weakly connected dominating set of G if the graph (V,E∩(D×V)) is connected. We define a weakly connected Roman dominating function on a graph G to be a Roman dominating function such that the set...

    Full text available to download

  • A lower bound on the total outer-independent domination number of a tree

    Publication

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Full text available to download

  • 2-bondage in graphs

    A 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...

    Full text to download in external service

  • A lower bound on the double outer-independent domination number of a tree

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...

    Full text available to download

  • Unicyclic graphs with equal total and total outer-connected domination numbers

    Publication

    - ARS COMBINATORIA - Year 2015

    Let G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...

    Full text to download in external service

  • On trees with equal domination and total outer-independent domination numbers

    Publication

    For a graph G=(V,E), a subset D subseteq V(G) is a dominating set if every vertex of V(G)D has a neighbor in D, while it is a total outer-independent dominating set if every vertex of G has a neighbor in D, and the set V(G)D is independent. The domination (total outer-independent domination, respectively) number of G is the minimum cardinality of a dominating (total outer-independent dominating, respectively) set of G. We characterize...

  • Graphs with equal domination and certified domination numbers

    Publication

    - Opuscula Mathematica - Year 2019

    A setDof vertices of a graphG= (VG,EG) is a dominating set ofGif every vertexinVG−Dis adjacent to at least one vertex inD. The domination number (upper dominationnumber, respectively) ofG, denoted byγ(G) (Γ(G), respectively), is the cardinality ofa smallest (largest minimal, respectively) dominating set ofG. A subsetD⊆VGis calleda certified dominating set ofGifDis a dominating set ofGand every vertex inDhas eitherzero...

    Full text available to download

  • Paired domination versus domination and packing number in graphs

    Publication

    Given a graph G = (V(G), E(G)), the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are denoted by γ (G), γpr(G), and γt(G), respectively. For a positive integer k, a k-packing in G is a set S ⊆ V(G) such that for every pair of distinct vertices u and v in S, the distance between u and v is at least k + 1. The k-packing number is the order of a largest kpacking and...

    Full text available to download

  • Reconfiguring Minimum Dominating Sets in Trees

    Publication

    We provide tight bounds on the diameter of γ-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph G. In particular, we prove that for any tree T of order n ≥ 3, the diameter of its γ-graph is at most n/2 in the single vertex replacement adjacency model, whereas in the slide adjacency model, it is at most 2(n − 1)/3. Our proof is constructive, leading to a simple linear-time algorithm for determining...

    Full text available to download

  • On trees with double domination number equal to total domination number plus one

    Publication

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Full text available to download

  • The convex domination subdivision number of a graph

    Publication

    Let G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...

    Full text available to download

  • Weakly convex domination subdivision number of a graph

    Publication

    - FILOMAT - Year 2016

    A set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...

    Full text available to download

  • Global defensive sets in graphs

    In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC ( X ) = true if and only if | N [ X ] ∩ S | ≥ | N [ X ] \ S | holds, where N [ X ] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for...

    Full text available to download

  • Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph

    Publication
    • M. Lemańska
    • J. A. RODRíGUEZ-VELáZQUEZ
    • R. Trujillo-Rasua

    - FUNDAMENTA INFORMATICAE - Year 2017

    A vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...

    Full text to download in external service

  • Trees having many minimal dominating sets

    We provide an algorithm for listing all minimal dominating sets of a tree of order n in time O(1.4656^n). This leads to that every tree has at most 1.4656^n minimal dominating sets. We also give an infinite family of trees of odd and even order for which the number of minimal dominating sets exceeds 1.4167^n, thus exceeding 2^{n/2}. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating...

    Full text to download in external service

  • Double bondage in graphs

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by gamma_d(G), is the minimum cardinality of a double dominating set of G. The double bondage number of G, denoted by b_d(G), is the minimum cardinality among all sets...

    Full text to download in external service

  • An upper bound on the total outer-independent domination number of a tree

    Publication

    A total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...

    Full text available to download

  • An upper bound for the double outer-independent domination number of a tree

    Publication

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...

    Full text available to download

  • Bounds on the vertex-edge domination number of a tree

    Publication

    - COMPTES RENDUS MATHEMATIQUE - Year 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

    Full text available to download

  • Non-isolating bondage in graphs

    A dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has a neighbor in $D$. The domination number of a graph $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. The non-isolating bondage number of $G$, denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma(G-E')...

    Full text available to download

  • Weakly convex and convex domination numbers of some products of graphs

    If $G=(V,E)$ is a simple connected graph and $a,b\in V$, then a shortest $(a-b)$ path is called a $(u-v)$-{\it geodesic}. A set $X\subseteq V$ is called {\it weakly convex} in $G$ if for every two vertices $a,b\in X$ exists $(a-b)$- geodesic whose all vertices belong to $X$. A set $X$ is {\it convex} in $G$ if for every $a,b\in X$ all vertices from every $(a-b)$-geodesic belong to $X$. The {\it weakly convex domination number}...

  • Isolation Number versus Domination Number of Trees

    Publication
    • M. Lemańska
    • M. J. Souto-Salorio
    • A. Dapena
    • F. Vazquez-Araujo

    - Mathematics - Year 2021

    If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....

    Full text available to download

  • Joanna Janczewska prof. dr hab.

    Joanna Janczewska obtained her PhD degree at the University of Gdansk in 2002. From October 1999 to September 2004 she was an assistant at the University of Gdansk. Since October 2004 she has been an assistant professor at the Gdansk University of Technology. Moreover, from October 2008 to September 2010 she had a visiting position in the Institute of Mathematics of the Polish Academy of Sciences. Her mathematical interests...

  • Bipartite theory of graphs: outer-independent domination

    Publication

    - NATIONAL ACADEMY SCIENCE LETTERS-INDIA - Year 2015

    Let $G = (V,E)$ be a bipartite graph with partite sets $X$ and $Y$. Two vertices of $X$ are $X$-adjacent if they have a common neighbor in $Y$, and they are $X$-independent otherwise. A subset $D \subseteq X$ is an $X$-outer-independent dominating set of $G$ if every vertex of $X \setminus D$ has an $X$-neighbor in $D$, and all vertices of $X \setminus D$ are pairwise $X$-independent. The $X$-outer-independent domination number...

    Full text to download in external service

  • Secure Italian domination in graphs

    Publication

    - JOURNAL OF COMBINATORIAL OPTIMIZATION - Year 2021

    An Italian dominating function (IDF) on a graph G is a function f:V(G)→{0,1,2} such that for every vertex v with f(v)=0, the total weight of f assigned to the neighbours of v is at least two, i.e., ∑u∈NG(v)f(u)≥2. For any function f:V(G)→{0,1,2} and any pair of adjacent vertices with f(v)=0 and u with f(u)>0, the function fu→v is defined by fu→v(v)=1, fu→v(u)=f(u)−1 and fu→v(x)=f(x) whenever x∈V(G)∖{u,v}. A secure Italian dominating...

    Full text available to download

  • On the super domination number of lexicographic product graphs

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2019

    The neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...

    Full text available to download

  • Domination-Related Parameters in Rooted Product Graphs

    Abstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.

    Full text to download in external service

  • Bożena Kostek prof. dr hab. inż.

  • Certified domination

    Publication

    Imagine that we are given a set D of officials and a set W of civils. For each civil x ∈ W, there must be an official v ∈ D that can serve x, and whenever any such v is serving x, there must also be another civil w ∈ W that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a given social network? In this paper, we introduce...

    Full text available to download

  • On the size of identifying codes in triangle-free graphs

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2012

    In an undirected graph G, a subset C⊆V(G) such that C is a dominating set of G, and each vertex in V(G) is dominated by a distinct subset of vertices from C, is called an identifying code of G. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph G, let gammaID(G) be the minimum cardinality of an identifying code in G. In this paper, we show that for any connected...

    Full text available to download