Filters
total: 1329
-
Catalog
displaying 1000 best results Help
Search results for: COUPLE-STRESS ELASTICITY
-
Ellipticity in couple-stress elasticity
PublicationWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
On the effective properties of foams in the framework of the couple stress theory
PublicationIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublicationThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Free Vibration of Flexomagnetic Nanostructured Tubes Based on Stress-driven Nonlocal Elasticity
PublicationA framework for the flexomagneticity influence is here considered extending the studies about this aspect on the small scale actuators. The developed model accommodates and composes linear Lagrangian strains, Euler-Bernoulli beam approach as well as an extended case of Hamilton’s principle. The nanostructured tube should subsume and incorporate size effect; however, for the sake of avoiding the staggering costs of experiments,...
-
Study of Slip Effects in Reverse Roll Coating Process Using Non-Isothermal Couple Stress Fluid
PublicationThe non-isothermal couple stress fluid inside a reverse roll coating geometry is considered. The slip condition is considered at the surfaces of the rolls. To develop the flow equations, the mathematical modelling is performed using conservation of momentum, mass, and energy. The LAT (lubrication approximation theory) is employed to simplify the equations. The closed form solution for velocity, temperature, and pressure gradient...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublicationThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment
PublicationStress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature...
-
Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory
PublicationIn the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform compression using the modified couple stress continuum theory with various boundary conditions has been considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using the Hamilton’s principle. An analytical approach has been applied to obtain...
-
THE ANALYSIS OF THE INFLUENCE OF STRESS DISTRIBUTION ON WEAR PROFILE IN LUBRICATED SLIDING CONTACT OF UHMW-PE VS TITANIUM Ti-13Nb-13Zr ALLOY
PublicationMetal – polymer sliding contacts are a typical combination in industry and medicine. For decades such a set of materials has been the primary choice in human joints endoprosthetic technology. In this paper tribological issues of are presented from a research on the potential for practical use of Ti-13Nb-13Zr/UHMW-PE couple for orthopedic endoprosthesis. In tests on simplified models it is critically important to carefully...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Saint-Venant torsion based on strain gradient theory
PublicationIn this study, the Saint-Venant torsion problem based on strain gradient theory is developed. A total form of Mindlin's strain gradient theory is used to acquire a general Saint-Venant torsion problem of micro-bars formulation. A new Finite Element formulation based on strain gradient elasticity theory is presented to solve the Saint-Venant torsion problem of micro-bars. Moreover, the problem is solved for both micro and macro...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublicationWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublicationThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
Central-force decomposition of spline-based modified embedded atom method potential
PublicationCentral-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublicationThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublicationIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Temperature influences on shear stability of a nanosize plate with piezoelectricity effect
PublicationPurpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account...
-
Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage
PublicationPurpose Thermal buckling of double-layered piezoelectric nanoplates has been analyzed by applying an external electric voltage on the nanoplates. The paper aims to discuss this issue. Design/methodology/approach Double-layered nanoplates are connected to each other by considering linear van der Waals forces. Nanoplates are placed on a polymer matrix. A comprehensive thermal stress function is used for investigating thermal buckling....
-
Nieliniowa statyka 6-parametrowych powłok sprężysto plastycznych. Efektywne obliczenia MES
PublicationGłównym zagadnieniem omawianym w monografii jest sformułowanie sprężysto-plastycznego prawa konstytutywnego w nieliniowej 6-parametrowej teorii powłok. Wyróżnikiem tej teorii jest występujący w niej w naturalny sposób tzw. stopień 6 swobody, czyli owinięcie (drilling rotation). Podstawowe założenie pracy to przyjęcie płaskiego stanu naprężenia uogólnionego na ośrodek typu Cosseratów. Takie podejście stanowi oryginalny aspekt opracowania....
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublicationA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublicationA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublicationIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublicationIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Electroelastic biaxial compression of nanoplates considering piezoelectric effects
PublicationIn the present theoretical work, it is assumed that a piezoelectric nanoplate is connected to the voltage meter which voltages have resulted from deformation of the plate due to in-plane compressive forces whether they are critical buckling loads or arbitrary forces. In order to derive governing equations, a simplified four-variable shear deformation plate theory has been employed using Hamilton’s principle and Von-Kármán...
-
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublicationPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
On the plastic buckling of curved carbon nanotubes
PublicationThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublicationThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
Tensile validation tests with failure criteria comparison for various GFRP laminates
PublicationThe paper studies the mechanical properties of glass fibre reinforced polymers (GFRP) with various types and orientation of reinforcement. Analyzed specimens manufactured in the infusion process are made of polymer vinyl ester resin reinforced with glass fibres. Several samples were examined containing different plies and various fibres orientation [0, 90] or [+45, –45]. To assess the mechanical parameters of laminates, a series...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublicationThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
On Dynamic Boundary Conditions Within the Linear Steigmann-Ogden Model of Surface Elasticity and Strain Gradient Elasticity
PublicationWithin the strain gradient elasticity we discuss the dynamic boundary conditions taking into account surface stresses described by the Steigmann–Ogden model. The variational approach is applied with the use of the least action functional. The functional is represented as a sum of surface and volume integrals. The surface strain and kinetic energy densities are introduced. The Toupin–Mindlin formulation of the strain gradient elasticity...
-
Effect of slag coal ash and foamed glass on the mechanical properties of two-stage concrete
PublicationTwo-stage concrete (TSC) is known by various names such as colcrete, Polcrete, preplaced aggregate concrete and prepacked concrete. It is different from traditional concrete in two fundamental ways, namely method of construction and mix proportion. Two-stage concrete (TSC) is defined as firstly, coarse aggregates are placed into the formwork and grout is applied to fill in the between coarse aggregate particles voids. Secondly,...
-
Torsional elasticity and energetics of F1-ATPase
PublicationFoF1-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded Fo generates the rotary torque that drives the rotation of the asymmetric shaft of F1. Mechanical energy of the rotating shaft is used by the F1 catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant...
-
A Note on Reduced Strain Gradient Elasticity
PublicationWe discuss the particular class of strain-gradient elastic material models which we called the reduced or degenerated strain-gradient elasticity. For this class the strain energy density depends on functions which have different differential properties in different spatial directions. As an example of such media we consider the continual models of pantographic beam lattices and smectic and columnar liquid crystals.
-
On nonlinear dilatational strain gradient elasticity
PublicationWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Influence of bush wear in water lubricated marine stern tube bearings with shaft misalignment
PublicationWater lubricated propeller shaft bearings are frequently employed on modern ships due to their advantages such as durability, simplicity and low price. Specific working conditions on ships cause shaft misalignment which often results in rapid wearing of bush and shaft. Shaft misalignment could be an effect of manufacturing or assembly faults but sometimes it appears due to hull or shaft deformation. The wearing process has influence...
-
On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes
PublicationMotivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated...
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublicationIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Towards the Application of Structure-Property Relationship Modeling in Materials Science: Predicting the Seebeck Coefficient for Ionic Liquid/Redox Couple Systems
PublicationThis work focuses on determining the influence of both ionic liquid (IL) type and redox couple concentration on Seebeck coefficient values of such a system. The quantitative structure property relationship (QSPR) and read-across techniques are proposed as methods to identify structural features of ILs (mixed with LiI/I2 redox couple), which have the most influence on the Seebeck coefficient (Se) values of the system. ILs consisting...
-
Theory of Elasticity and Plasticity
e-Learning CoursesThis course discusses the general theory of elastic and plastic material behavior of solids.
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublicationWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
Investigations of morphology and optical properties of thin films of TiOPc/PTCDA donor acceptor couple
PublicationPurpose: The aim of this work is studying surface topography and optical properties of organic thin films ofTiOPc and PTCDA blends deposited by thermal vacuum evaporation.Design/methodology/approach: Thin films of blends of organic materials are provided as donor/acceptorcouples in bulk heterojunction based organic solar cells. Thin films of TiOPc - PTCDA mixture have beendeposited by thermal vacuum evaporation from one source...
-
On weak solutions of boundary value problems within the surface elasticity of Nth order
PublicationA study of existence and uniqueness of weak solutions to boundary value problems describing an elastic body with weakly nonlocal surface elasticity is presented. The chosen model incorporates the surface strain energy as a quadratic function of the surface strain tensor and the surface deformation gradients up to Nth order. The virtual work principle, extended for higher‐order strain gradient media, serves as a basis for defining...
-
Linear Micropolar Elasticity Analysis of Stresses in Bones Under Static Loads
PublicationWe discuss the finite element modeling of porous materials such as bones using the linear micropolar elasticity. In order to solve static boundary-value problems, we developed new finite elements, which capture the micropolar behavior of the material. Developed elements were implemented in the commercial software ABAQUS. The modeling of a femur bone with and without implant under various stages of healing is discussed in details
-
On Effective Bending Stiffness of a Laminate Nanoplate Considering Steigmann–Ogden Surface Elasticity
PublicationAs at the nanoscale the surface-to-volume ratio may be comparable with any characteristic length, while the material properties may essentially depend on surface/interface energy properties. In order to get effective material properties at the nanoscale, one can use various generalized models of continuum. In particular, within the framework of continuum mechanics, the surface elasticity is applied to the modelling of surface-related...
-
On Anti-Plane Surface Waves Considering Highly Anisotropic Surface Elasticity Constitutive Relations
PublicationWithin the framework of highly anisotropic surface elasticity model we discuss the propagation of new type of surface waves that are anti-plane surface waves. By the highly anisotropic surface elasticity model we mean the model with a surface strain energy density which depends on incomplete set of second derivatives of displacements. From the physical point of view this model corresponds to a coating made of a family of parallel...
-
Strong ellipticity within the Toupin–Mindlin first strain gradient elasticity theory
PublicationWe discuss the strong ellipticity (SE) condition within the Toupin–Mindlin first strain gradient elasticity theory. SE condition is closely related to certain material instabilities and describes mathematical properties of corresponding boundary-value problems. For isotropic solids, SE condition transforms into two inequalities in terms of five gradient-elastic moduli.
-
Stress: The International Journal on the Biology of Stress
Journals -
Ab initio elasticity of chalcopyrites
Publication -
Theory of Elasticity and Plasticity 2023
e-Learning CoursesThis course discusses the general theory of elastic and plastic material behavior of solids.
-
Theory of Elasticity and Plasticity 2024
e-Learning CoursesThis course discusses the general theory of elastic and plastic material behavior of solids.