Search results for: FRACTIONAL DERIVATIVES AND INTEGRALS
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublicationIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
On Applications of Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are discussed from the point of view of applications in the circuit theory. The properties of FO derivatives required for the circuit-level modelling are formulated. Potential problems related to the generalization of transmission line equations with the use of FO derivatives are presented. It is demonstrated that some of formulations of the FO derivatives have limited...
-
Fractional Derivatives Application to Image Fusion Problems
Publication -
On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited...
-
Comments on various extensions of the Riemann–Liouville fractional derivatives : About the Leibniz and chain rule properties
PublicationStarting from the Riemann–Liouville derivative, many authors have built their own notion of fractional derivative in order to avoid some classical difficulties like a non zero derivative for a constant function or a rather complicated analogue of the Leibniz relation. Discussing in full generality the existence of such operator over continuous functions, we derive some obstruction Lemma which can be used to prove the triviality...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Systems of Nonlinear Fractional Differential Equations
PublicationUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublicationIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Crank–Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations
PublicationIn this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grünwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes....
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
PublicationTo obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting...
-
A NUMERICAL STUDY ON THE DYNAMICS OF DENGUE DISEASE MODEL WITH FRACTIONAL PIECEWISE DERIVATIVE
PublicationThe aim of this paper is to study the dynamics of Dengue disease model using a novel piecewise derivative approach in the sense of singular and non-singular kernels. The singular kernel operator is in the sense of Caputo, whereas the non-singular kernel operator is the Atangana–Baleanu Caputo operator. The existence and uniqueness of a solution with piecewise derivative are examined for the aforementioned problem. The suggested...
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublicationIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Fundamental properties of solutions to fractional-order Maxwell's equations
PublicationIn this paper, fundamental properties of solutions to fractional-order (FO) Maxwell's equations are analysed. As a starting point, FO Maxwell's equations are introduced in both time and frequency domains. Then, we introduce and prove the fundamental properties of electromagnetic field in FO electromagnetics, i.e. energy conservation, uniqueness of solutions, and reciprocity. Furthermore, the algorithm of the plane wave simulation...
-
Simple Fractal Calculus from Fractal Arithmetic
PublicationNon-Newtonian calculus that starts with elementary non-Diophantine arithmetic operations of a Burgin type is applicable to all fractals whose cardinality is continuum. The resulting definitions of derivatives and integrals are simpler from what one finds in the more traditional literature of the subject, and they often work in the cases where the standard methods fail. As an illustration, we perform a Fourier transform of a real-valued...
-
Relativity of arithmetic as a fundamental symmetry of physics
PublicationArithmetic operations can be defined in various ways, even if one assumes commutativity and associativity of addition and multiplication, and distributivity of multiplication with respect to addition. In consequence, whenever one encounters ‘plus’ or ‘times’ one has certain freedom of interpreting this operation. This leads to some freedom in definitions of derivatives, integrals and, thus, practically all equations occurring in...
-
Identification and non-integer order modelling of synchronous machines operating as generator
PublicationThis paper presents an original mathematical model of a synchronous generator using derivatives of fractional order. In contrast to classical models composed of a large number of R-L ladders, it comprises half-order impedances, which enable the accurate description of the electromagnetic induction phenomena in a wide frequency range, while minimizing the order and number of model parameters. The proposed model takes into account...
-
Modification of gradient HPLC method for determination of small molecules' affinity to human serum albumin under column safety conditions: Robustness and chemometrics study
PublicationIn the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity....
-
Numerical solution of fractional neutron point kinetics in nuclear reactor
PublicationThis paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme...
-
Functional delay fractional equations
PublicationIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative
PublicationIn this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality...
-
About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof
PublicationRecently, the fractional Noether's theorem derived by G. Frederico and D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B. Malinowska in (see [7]) using a counterexample and doubts are stated about the validity of other Noether's type Theorem, in particular ([9],Theorem 32). However, the counterexample does not explain why and where the proof given in [10] does not work. In this paper, we make a detailed analysis...
-
Fractional problems with advanced arguments
PublicationThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator
PublicationA new approach is used to investigate the analytical solutions of the mathematical fractional Casson fluid model that is described by the Constant Proportional Caputo fractional operator having non-local and singular kernel near an infinitely vertical plate. The phenomenon has been expressed in terms of partial differential equations, and the governing equations were then transformed in non-dimensional form. For the sake of generalized...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Fractional Order Dynamic Positioning Controller
PublicationImproving the performance of Dynamic Positioning System in such applications as station keeping, position mooring and slow speed references tracking requires improving the position and heading control precision. These goals can be achieved through the improvement of the ship control system. Fractional-order calculus is a very useful tool which extends classical, integer-order calculus and is used in contemporary modeling and control...
-
Boundary problems for fractional differential equations
PublicationIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Progress on Chemistry and Application of Chitin and Its Derivatives
Journals -
Journal of Derivatives
Journals -
The integrals of velocity near the tissue in bioreactor.
PublicationWykazano, że siły tarcia występujące w trakcie hodowli decydują o jakości wzostu tkanki i jej planowanych, zamierzanych właściwościach. Siły tarcia wyznaczamy z pola prędkości cieczy biologicznej przepływającej wokół powierzchni tkanki. Dlatego w pracy tej wyznacza się pole prędkości przepływu cieczy biologicznej w cienkiej warstewce przyściennej. Wyznaczone analitycznie pole prędkości charakteryzuje się newtonowskimi właściwościami...
-
Electromagnetic-based derivation of fractional-order circuit theory
PublicationIn this paper, foundations of the fractional-order circuit theory are revisited. Although many papers have been devoted to fractional-order modelling of electrical circuits, there are relatively few foundations for such an approach. Therefore, we derive fractional-order lumped-element equations for capacitors, inductors and resistors, as well as Kirchhoff’s voltage and current laws using quasi-static approximations of fractional-order...
-
Fractional differential equations with causal operators
PublicationWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
On Sample Rate Conversion Based on Variable Fractional Delay Filters
PublicationThe sample rate conversion algorithm based on variable fractional delay filters is often used if the resampling ratio cannot be expressed as the ratio of small integer numbers or if it is not constant. The main advantage of such solution is that it allows for arbitrary resampling ratios which can even be changed during the resampling process. In this paper a discussion on influence of different approaches to fractional filter...
-
Fractional-order Systems and Synchronous Generator Voltage Regulator
PublicationModern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using...
-
Dataset of phase portraits of the fractional prey-predator model with Holling type-II interaction (without predator harvesting)
Open Research DataThe need for a fractional generalization of a given classical model is often due to new behaviors which cannot be taken into account by the model. In this situation, it can be useful to look for a fractional deformation of the initial system, trying to fit the fractional exponent of differentiation in order to catch properly the data.
-
Square root RC Nyquist filter of fractional delay
PublicationIn this paper we propose a discrete-time FIR (finite impulse response) filter which couples the role of square root Nyquist filter with fractional delay filter. This filter enables to substitute for a cascade of square root RC (SRRC) Nyquist filter and fractional delay filter in one device/algorithm. The aim is to compensate for transmission delay in communication system. Statistically defined performances, e.g. BER (bit error...
-
Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)
PublicationThe paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...
-
Path integrals formulations leading to propagator evaluation for coupled linear physics in large geometric models
PublicationReformulating linear physics using second kind Fredholm equations is very standard practice. One of the straightforward consequences is that the resulting integrals can be expanded (when the Neumann expansion converges) and probabilized, leading to path statistics and Monte Carlo estimations. An essential feature of these algorithms is that they also allow to estimate propagators for all types of sources, including initial conditions....
-
efficient fractional delay hilbert transform filter in the farrow structure
PublicationIn this paper the design and application of a Fractional Delay Hilbert Transform Filter (FDHTF) into an adaptive sub-sample delay estimation between two separated sinusoidal signals is considered. The FDHTF incorporates the functions of Hilbertian and variable fractional delay filtering of the incoming signal simultaneously, in one stage. In traditional approach each of these operations was performed separately. Obtained value...
-
Review of Derivatives Research
Journals -
Simulation of Signal Propagation Along Fractional-Order Transmission Lines
PublicationIn this paper, the simulation method of signal propagation along fractional-order (FO) transmission lines is presented. Initially, fractional calculus and the model of FO transmission line are introduced. Then, the algorithm allowing for simulation of the nonmonochromatic wave propagation along FO transmission lines is presented. It employs computations in the frequency domain, i.e., an analytical excitation is transformed to the...
-
Numerical Investigation of Nuclear Reactor Kinetic and Heat Transfer Fractional Model with Temperature Feedback
PublicationAbstract—In the paper, the numerical results concerning the kinetics and proposed heat exchange models in nuclear reactor based on fractional calculus are presented for typical inputs. Two fractional models are proposed and compared with the model based on ordinary derivative. The first fractional model is based on one of the generalized Cattaneo equations. The second one is based on replacing the ordinary to fractional order of...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublicationA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublicationIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
Simulation of Wave Propagation in Media Described by Fractional-Order Models
PublicationIn this paper, algorithms for simulation of the wave propagation in electromagnetic media described by fractional-order (FO) models (FOMs) are presented. Initially, fractional calculus and FO Maxwell's equations are introduced. The problem of the wave propagation is formulated for media described by FOMs. Then, algorithms for simulation of the non-monochromatic wave propagation are presented which employ computations in the time...
-
Variable Ratio Sample Rate Conversion Based on Fractional Delay Filter
PublicationIn this paper a sample rate conversion algorithm which allows for continuously changing resampling ratio has been presented. The proposed implementation is based on a variable fractional delay filter which is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis of fractional delay filters which are designed using the offset window method. The proposed approach allows us to freely...
-
Variable Fractional Delay Filter Design Using a Symmetric Window
PublicationIn this paper a numerically efficient method for designing a nearly optimal variable fractional delay (VFD) filter based on a simple and well-known window method is presented. In the proposed method a single window extracted from the optimal filter with fixed fractional delay (FD) is divided into even and odd part. Subsequently, the odd part is discarded and symmetric even part of the extracted window is used to design a family...