displaying 1000 best results Help
Search results for: SECOND GRADIENT MATERIALS
-
Continuum models for pantographic blocks with second gradient energies which are incomplete
PublicationWe postulate a deformation energy for describing the mechanical behavior of so called pantographic blocks, that is bodies constituted by stacking of layers of pantographic sheets. We remark that the pantographic effect is limited in the plane of pantographic sheets and therefore only the second derivatives of transverse displacements along the pantographic fibers appear in the chosen deformation energy. We use this novel energy...
-
Local material symmetry group for first- and second-order strain gradient fluids
PublicationUsing an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients....
-
Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses
PublicationHere we discuss the similarities and differences in anti-plane surface wave propagation in an elastic half-space within the framework of the theories of Gurtin–Murdoch surface elasticity and Toupin–Mindlin strain-gradient elasticity. The qualitative behaviour of the dispersion curves and the decay of the obtained solutions are quite similar. On the other hand, we show that the solutions relating to the surface elasticity model...
-
Deformation of an elastic second gradient spherical body under equatorial line density of dead forces
PublicationWe consider deformations of an elastic body having initially a spherical shape. Assumed deformation energy depends on the first and second gradient of displacements. We apply an equatorial line density of dead loads, that are forces per unit line length directed in radial direction and applied along the equator of the sphere. We restrict ourselves our analysis to the case of linearized second strain gradient isotropic elasticity...
-
Analysis of strain localization in reinforced concrete elements with explicit second-gradient strain damage approach
PublicationArtykuł omawia obliczanie elementów żelbetowych przy zastosowaniu modelu zniszczeniowego z degradacją sztywności z uwzględnieniem lokalizacji odkształceń. Obliczenia wykonano dla belek żelbetowych.
-
Surface effects of network materials based on strain gradient homogenized media
PublicationThe asymptotic homogenization of periodic network materials modeled as beam networks is pursued in this contribution, accounting for surface effects arising from the presence of a thin coating on the surface of the structural beam elements of the network. Cauchy and second gradient effective continua are considered and enhanced by the consideration of surface effects. The asymptotic homogenization technique is here extended to...
-
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
PublicationThis paper is devoted to the theoretical study of the dynamic response of non-cylindrical curved viscoelastic single-walled carbon nanotubes (SWCNTs). The curved nanotubes are largely used in many engineering applications, but it is challenging in understanding mechanically the dynamic response of these curved SWCNTs when considering the influences of the material viscosity. The viscoelastic damping effect on the dynamic response...
-
Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity
PublicationWe discuss connections between the strong ellipticity condition and the infinitesimal instability within the nonlinear strain gradient elasticity. The strong ellipticity (SE) condition describes the property of equations of statics whereas the infinitesimal stability is introduced as the positive definiteness of the second variation of an energy functional. Here we establish few implications which simplify the further analysis...
-
Łukasz Skarżyński dr hab. inż.
People -
A general theory for anisotropic Kirchhoff–Love shells with in-plane bending of embedded fibers
PublicationThis work presents a generalized Kirchhoff–Love shell theory that can explicitly capture fiber-induced anisotropy not only in stretching and out-of-plane bending, but also in in-plane bending. This setup is particularly suitable for heterogeneous and fibrous materials such as textiles, biomaterials, composites and pantographic structures. The presented theory is a direct extension of classical Kirchhoff–Love shell theory to incorporate...
-
Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method
PublicationThis research predicts theoretically post-critical axial buckling behavior of truncated conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the nanostructure...
-
A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media
PublicationThe effective piezoelectric properties of heterogeneous materials are evaluated in the context of periodic homogenization, whereby a variational formulation is developed, articulated with the extended Hill macrohomogeneity condition. The entire set of homogenized piezoelectric moduli is obtained as the volumetric averages of the microscopic properties of the individual constituents weighted by the displacement and polarization...
-
On nonlinear dilatational strain gradient elasticity
PublicationWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublicationIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Pantographic metamaterials: an example of mathematically driven design and of its technological challenges
PublicationIn this paper, we account for the research efforts that have been started, for some among us, already since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first stage of these efforts, as it often happens, the research was based on the results of mathematical investigations. The problem to be solved was stated as follows: determine the material (micro)structure governed by those...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient
PublicationIn the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3) are described. X-ray diffraction...
-
Gradient versus proper gradient homotopies
PublicationWe compare the sets of homotopy classes of gradient and proper gradient vector fields in the plane. Namely, we show that gradient and proper gradient homotopy classi cations are essentially different. We provide a complete description of the sets of homotopy classes of gradient maps from R^n to R^n and proper gradient maps from R^2 to R^2 with the Brouwer degree greater or equal to zero.
-
Dawid Ryś dr hab. inż.
PeopleCourses PRINCE2® Foundation Certificate in Project Management Tire-Pavement Interaction course Micromechanical Analysis of Asphalt Concrete
-
Functional Materials
e-Learning CoursesPrerequisites: The course is primarily open to all PhD students at Gdansk University of Technology. This course is compulsory for PhD students assigned to Automation, Electronics, Electrical Engineering and Space Technologies tracks at Doctoral School at Gdańsk University of Technology Content During the course students will learn about different classes of intelligent materials and a strong emphasis will be placed on their practical...
-
Janusz Smulko prof. dr hab. inż.
PeopleHe was born on April 25, 1964 in Kolno. He graduated in 1989 with honors from the Faculty of Electronics at Gdańsk University of Technology, specialising in measuring instruments. In 1989 he took second place in the Red Rose competition for the best student in the Pomerania Region. Since the beginning of his career ha has been associated with Gdańsk University of Technology: research assistant (1989-1996), Assistant Professor (1996-2012),...
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublicationWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
-
The Hopf theorem for gradient local vector fields on manifolds
PublicationWe prove the Hopf theorem for gradient local vector fields on manifolds, i.e., we show that there is a natural bijection between the set of gradient otopy classes of gradient local vector fields and the integers if the manifold is connected Riemannian without boundary.
-
Magnetic field gradient as the most useful signal for detection of flaws using MFL technique
PublicationThe magnetic flux leakage (MFL) technique is extensively used for detection of flaws as well as for evaluation of their dimensions in ferromagnetic materials. However, proper analysis of the MFL signal is hindered by the MFL sensor velocity causing distortions of this signal. Traditionally measured components of the MFL signal are particularly sensitive to the scanning velocity. In this paper, an another signal – the gradient of...
-
Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree
PublicationConsider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient...
-
Connected components of the space of proper gradient vector fields
PublicationWe show that there exist two proper gradient vector fields on Rn which are homotopic in the category of proper maps but not homotopic in the category of proper gradient maps.
-
Jacobi and gauss-seidel preconditioned complex conjugate gradient method with GPU acceleration for finite element method
PublicationIn this paper two implementations of iterative solvers for solving complex symmetric and sparse systems resulting from finite element method applied to wave equation are discussed. The problem under investigation is a dielectric resonator antenna (DRA) discretized by FEM with vector elements of the second order (LT/QN). The solvers use the preconditioned conjugate gradient (pcg) method implemented on Graphics Processing Unit (GPU)...
-
Path components of the space of gradient vector fields on the two dimensional disc
PublicationWe present a short proof that if two gradient maps on the twodimensional disc have the same degree, then they are gradient homotopic.
-
Ellipticity of gradient poroelasticity
PublicationWe discuss the ellipticity properties of an enhanced model of poroelastic continua called dilatational strain gradient elasticity. Within the theory there exists a deformation energy density given as a function of strains and gradient of dilatation. We show that the equilibrium equations are elliptic in the sense of Douglis–Nirenberg. These conditions are more general than the ordinary and strong ellipticity but keep almost all...
-
Kamila Kokot-Kanikuła mgr
PeopleKamila Kokot-Kanikuła is a digital media senior librarian at Gdańsk University of Technology (GUT) Library. She works in Digital Archive and Multimedia Creation Department and her main areas of interests include early printed books, digital libraries, Open Access and Open Science. In the Pomeranian Digital Library (PDL) Project she is responsible for creating annual digital plans, transferring files on digital platform, and promoting...
-
A Note on Reduced Strain Gradient Elasticity
PublicationWe discuss the particular class of strain-gradient elastic material models which we called the reduced or degenerated strain-gradient elasticity. For this class the strain energy density depends on functions which have different differential properties in different spatial directions. As an example of such media we consider the continual models of pantographic beam lattices and smectic and columnar liquid crystals.
-
On relations between gradient and classical equivariant homotopy groups of spheres
PublicationWe investigate relations between stable equivariant homotopy groups of spheres in classical and gradient categories. To this end, the auxiliary category of orthogonal equivariant maps, a natural enlargement of the category of gradient maps, is used. Our result allows for describing stable equivariant homotopy groups of spheres in the category of orthogonal maps in terms of classical stable equivariant groups of spheres with shifted...
-
Proper gradient otopies
PublicationWe prove that the inclusion of the space of proper gradient local maps into the space of proper local maps induces a bijection between the sets of the respective otopy classes of these maps.
-
Proper gradient otopies
PublicationWe prove that the inclusion of the space of proper gradient local maps into the space of proper local maps induces a bijection between the sets of the respective otopy classes of these maps.
-
The Hopf type theorem for equivariant gradient local maps
PublicationWe construct a degree-type otopy invariant for equivariant gradient local maps in the case of a real finite-dimensional orthogonal representation of a compact Lie group. We prove that the invariant establishes a bijection between the set of equivariant gradient otopy classes and the direct sum of countably many copies of Z.
-
Saint-Venant torsion based on strain gradient theory
PublicationIn this study, the Saint-Venant torsion problem based on strain gradient theory is developed. A total form of Mindlin's strain gradient theory is used to acquire a general Saint-Venant torsion problem of micro-bars formulation. A new Finite Element formulation based on strain gradient elasticity theory is presented to solve the Saint-Venant torsion problem of micro-bars. Moreover, the problem is solved for both micro and macro...
-
Ellipticity in couple-stress elasticity
PublicationWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
Topological degree for equivariant gradient perturbations of an unbounded self-adjoint operator in Hilbert space
PublicationWe present a version of the equivariant gradient degree defined for equivariant gradient perturbations of an equivariant unbounded self-adjoint operator with purely discrete spectrum in Hilbert space. Two possible applications are discussed.
-
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
PublicationThis article is intended to analyze forced vibrations of a piezoelectric-piezomagnetic ceramic nanoplate by a new refined shear deformation plate theory in conjunction with higher-order nonlocal strain gradient theory. As both stress nonlocality and strain gradient size-dependent effects are taken into account using the higher-order nonlocal strain gradient theory, the governing equations of the composite nanoplate are formulated....
-
Leszek Ziemczonek dr
PeopleUniversity education 1973-1978 – Nicolaus Copernicus University in Toruń, University of Gdańsk in Gdańsk, Mathematical Physics, M. Sc. 1979 – Diploma of Postgraduate Studies, Pedagogics 1989 – Institute of Physics, Polish Academy of Sciences in Warsaw, Theoretical Physics, Ph. D. 2010-2012 – Diploma of Postgraduate Studies, Mathematics Training: · 09.1983 – Trieste (Italy) – International Centre for Theoretical Physics...
-
Materials
Journals -
Analysis of Accuracy of Modified Gradient Method in Indoor Radiolocalisation System
PublicationIn this paper a new method, called modified gradient method, has been proposed for position calculation on the basis of distance measurement in indoor environment. It is shown that well known method of position calculation such as Foy is inefficient in indoor environment. In this article is also described the indoor radiolocalisation system which was used for collecting distance measurements which were employed for further comparative...
-
Optimal shape and stress control of geometrically nonlinear structures with exact gradient with respect to the actuation inputs
PublicationThis paper presents an efficient and robust optimization methodology for stress and shape control of actuated geometrically nonlinear elastic structures, applied to 3D trusses. The actuation inputs, modeled as prescribed strains, serve as the optimization variables. The objective is to minimize total actuation while satisfying several constraints: (i) actuation bounds in each actuated element and (ii) target ranges for nodal displacements...
-
Strong ellipticity within the Toupin–Mindlin first strain gradient elasticity theory
PublicationWe discuss the strong ellipticity (SE) condition within the Toupin–Mindlin first strain gradient elasticity theory. SE condition is closely related to certain material instabilities and describes mathematical properties of corresponding boundary-value problems. For isotropic solids, SE condition transforms into two inequalities in terms of five gradient-elastic moduli.
-
Investigation of the aerodynamics of an innovative verticalaxis wind turbine
PublicationThis paper presents a preliminary three dimensional analysis of the transient aerodynamic phenomena occurring in the innovative modification of classic Savonius wind turbine. An attempt to explain the increased efficiency of the innovative design in comparison with the traditional solution is undertaken. Several vorticity measures such as enstrophy, absolute helicity and the integral of the velocity gradient tensor second invariant...
-
The homotopy type of the space of gradient vector fields on the two-dimensional disc
PublicationWe prove that the inclusion of the space of gradient vector fields into the space of all vector fields on D^2 non-vanishing in S^1 is a homotopy equivalence
-
On Dynamic Boundary Conditions Within the Linear Steigmann-Ogden Model of Surface Elasticity and Strain Gradient Elasticity
PublicationWithin the strain gradient elasticity we discuss the dynamic boundary conditions taking into account surface stresses described by the Steigmann–Ogden model. The variational approach is applied with the use of the least action functional. The functional is represented as a sum of surface and volume integrals. The surface strain and kinetic energy densities are introduced. The Toupin–Mindlin formulation of the strain gradient elasticity...
-
Expedited antenna optimization with numerical derivatives and gradient change tracking
PublicationDesign automation has been playing an increasing role in the development of novel antenna structures for various applications. One of its aspects is electromagnetic (EM)-driven design closure, typically applied upon establishing the antenna topology, and aiming at adjustment of geometry parameters to boost the performance figures as much as possible. Parametric optimization is often realized using local methods given usually reasonable...
-
Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium
PublicationThe present investigation is focused on the buckling behavior of strain gradient nonlocal beam embedded in Winkler elastic foundation. The first-order strain gradient model has been combined with the Euler–Bernoulli beam theory to formulate the proposed model using Hamilton’s principle. Three numerically efficient methods, namely Haar wavelet method (HWM), higher order Haar wavelet method (HOHWM), and differential quadrature method...