Search results for: bifurcation theory
-
Dynamics of S-unimodal maps used in population modeling.
Open Research DataS-unimodal maps are maps of the interval with negative Schwarzian derivative and having only one turning point (such that the map is increasing to the left of the turning point and decreasing to the right of it). Theory of S-unimodal maps is now a well-developed branch of discrete dynamical systems, including famous Singer theorem which implies existence...
-
On rotational instability within the nonlinear six-parameter shell theory
PublicationWithin the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters...
-
On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
PublicationWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Karman equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations...
-
The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems
PublicationWe define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This G-equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the G-equivariant spectral flow...
-
Nilpotent singularities and chaos: Tritrophic food chains
PublicationLocal bifurcation theory is used to prove the existence of chaotic dynamics in two well-known models of tritrophic food chains. To the best of our knowledge, the simplest technique to guarantee the emergence of strange attractors in a given family of vector fields consists of finding a 3-dimensional nilpotent singularity of codimension 3 and verifying some generic algebraic conditions. We provide the essential background regarding...
-
Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect
PublicationGalerkin weighted residual method (GWRM) is applied and implemented to address the axial stability and bifurcation point of a functionally graded piezomagnetic structure containing flexomagneticity in a thermal environment. The continuum specimen involves an exponential mass distributed in a heterogeneous media with a constant square cross section. The physical neutral plane is investigated to postulate functionally graded material...
-
The Conley index, cup-length and bifurcation
PublicationZastosowano strukturę modułu w indeksie kohomologicznym Conleya do dowodu twierdzenia o minimalnej ilości rozwiązań okresowych dla układów Hamiltonowskich. Wykazano też ogólne twierdzenia dotyczące nietrywialności struktury mudułu.
-
Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation
PublicationWe consider two-parameter bifurcation of equilibrium states of an elastic rod on a deformable foundation. Our main theorem shows that bifurcation occurs if and only if the linearization of our problem has nontrivial solutions. In fact our proof, based on the concept of the Brouwer degree, gives more, namely that from each bifurcation point there branches off a continuum of solutions.
-
A note on simple bifurcation of equilibrium forms of an elastic rod on a deformable foundation
PublicationWe study bifurcation of equilibrium states of an elastic rod on a two-parameter Winkler foundation. In the article "Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation" [Nonlinear Anal., Real World Appl. 39 (2018) 451-463] the existence of simple bifurcation points was proved by the use of the Crandall-Rabinowitz theorem. In this paper we want to present an alternative proof of this fact based...
-
Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance
PublicationThe impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made...
-
Symmetry-Breaking Bifurcation for Free Elastic Shell of Biological Cluster, Part 2
PublicationWe will be concerned with a two-dimensional mathematical model for a free elastic shell of biological cluster. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of the shell of biological cluster may be found as solutions of a certain nonlinear functional-differential equation with several physical parameters. For each multiparameter this...
-
Extremal thermal loading of a bifurcation pipe
PublicationThe subject of considerations is a spherical bifurcation pipe of a live steam made of steel P91, which is an element of a block of coal-fired power plant working with a 18K370 turbine. As experience shows, it is a very sensitive element of the boiler pipelines. An extreme work scenario for such a block has been adopted, in which the turbine is shutting down to a warm state three times in 24 hours. This is an action dictated by...
-
Hopf bifurcation in time‐delayed gene expression model with dimers
PublicationWe study a mathematical model of gene transcription and protein synthesis with negative feedback. We consider a system of equations taking into account the formation of dimers (i.e., complex formed by two protein monomers), the way in which dimers bind to DNA and time delay in translation process. For the model consisting of three ordinary differential equations with time delay, we derive conditions for stability of the positive...
-
Fixed point indices of iterated smooth maps in arbitrary dimension
PublicationWe give a complete description of possible sequences ofindices of iterations of f at an isolated fixed point, answering inaffirmative the Chow, Mallet-Paret and Yorke conjecture posed in[S.N. Chow, J. Mallet-Parret, J.A. Yorke, A periodic point index whichis a bifurcation invariant, in: Geometric Dynamics, Rio de Janeiro,1981, in: Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983,pp. 109-131].
-
Local buckling and initial post-buckling behaviour of channel member flange - analytical approach
PublicationThe local buckling and initial post-buckling behaviour of the cold-formed channel member flange is investigated. The governing nonlinear differential equation for axially compressed columns and beams undergoing pure bending is derived using the stationary total potential energy principle. The critical stress and initial post-buckling equilibrium path is determined by means of a perturbation approach. The results obtained allow...
-
Analysis of a gene expression model
PublicationWe study a mathematical model of gene transcription and protein synthesis with negative feedback. We consider a system of equations taking into account the number of active binding sites, the way in which dimers bind to DNA and time delay in translation process. For a simplified model that consist of three ordinary differential equations with time delay we derive conditions for stability of the positive steady state and for the...
-
Visualizing Carotid Bodies With Doppler Ultrasound Versus CT Angiography: Preliminary Study
PublicationOBJECTIVE. The purpose of this article is to evaluate the utility of ultrasound in identifying carotid bodies (CBs) in patients with drug-resistant arterial hypertension. SUBJECTS AND METHODS. We enrolled 13 patients with drug-resistant hypertension into a trial for surgical CB excision. CT angiography (CTA) and Doppler ultrasound (DUS) of the cervical arteries were performed before surgery. CBs were identified in a blind manner...
-
Mathematical analysis of a generalised p53-Mdm2 protein gene expression model
PublicationWe propose the generalisation of the p53-Mdm2 protein gene expression model introduced by Monk (2003). We investigate the stability of a unique positive steady state and formulate conditions which guarantee the occurrence of the Hopf bifurcation. We show that oscillatory behaviour can be caused not only by time lag in protein transcription process, but also can be present in the model without time delay. Moreover, we investigate...
-
Bistability in a One-Dimensional Model of a Two-Predators-One-Prey Population Dynamics System
PublicationIn this paper, we study a classical two-predators-one-prey model. The classical model described by a system of three ordinary differential equations can be reduced to a one-dimensional bimodalmap. We prove that this map has at most two stable periodic orbits. Besides, we describe the bifurcation structure of the map. Finally, we describe a mechanism that leads to bistable regimes. Taking this mechanism into account, one can easily...
-
Topological Behaviour of Solutions of Vibro-Impact Systems in the Neighborhood of Grazing
PublicationThe grazing bifurcation is considered for the Newtonian model of vibro-impact systems. A brief review on the conditions, sufficient for the existence of a grazing family of periodic solutions, is given. The properties of these periodic solutions are discussed. A plenty of results on the topological structure of attractors of vibro-impact systems is known. However, since the considered system is strongly nonlinear, these attractors...
-
Subcritical bifurcation of free elastic shell of biological cluster
PublicationIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
-
Buckling and initial post-local buckling behaviour of cold-formed channel member flange
PublicationThe initial post-buckling behaviour of a cold-formed channel member flange after its local buckling is investigated. An axially compressed column or beam subjected to pure bending is considered. The member material is assumed to follow a linear stress-strain relationship. The governing non-linear differential equation of the problem is derived using the minimum total potential energy principle. An approximate solution for the equation...
-
MEMS Modeling in the Context of Inertial Navigation
PublicationUnderwater navigation is a research topic current undertaken in many areas of underwater research. The article presents an analysis resulting from MEMS modelling in the context of inertial navigation. The ideal approach was confronted with its limitations, but a non-linear approach, close to the real one, was also presented. Both models were compared in the context of inertial navigation. Random disturbances and their impact on linear...
-
Periodic and chaotic dynamics in a map‐based neuron model
PublicationMap-based neuron models are an important tool in modeling neural dynamics and sometimes can be considered as an alternative to usually computationally costlier models based on continuous or hybrid dynamical systems. However, due to their discrete nature, rigorous mathematical analysis might be challenging. We study a discrete model of neuronal dynamics introduced by Chialvo in 1995. In particular, we show that its reduced one-dimensional...
-
The buckling analysis of a cold-formed steel C-sectional column resting on an elastic foundation
PublicationThe paper is focused on stability analysis of different models of steel cold-formed C-section column. The analysed element may be applied as a primary load-bearing member in steel trusses or silo columns. The column can be used as a support for a wall of roof plates made of corrugated sheets. The wall sheeting that restrains the column against buckling may be considered as an elastic foundation. Due to the design solutions the...
-
Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches
PublicationThis paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite...
-
Buckling resistance of a metal column in a corrugated sheet silo - experiments and non-linear stability calculations
PublicationThe results of experimental and numerical tests of a single corrugated sheet silo column’s buckling resistance are presented in this study. The experiments were performed in a real silo with and without bulk solid (wheat). A very positive impact of the bulk solid on the column buckling resistance occurred. The experimental results were first compared to the buckling resistance calculated by Eurocode 3 formulae. The comparison revealed that...
-
Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls
PublicationFluid–structure interaction (FSI) gained a huge attention of scientists and researchers due to its applications in biomedical and mechanical engineering. One of the most important applications of FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using non-Newtonian models. In this...
-
Topological-numerical analysis of a two-dimensional discrete neuron model
PublicationWe conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times...
-
Anita Zgorzelska dr inż.
People