Search results for: coarse-to-fine
-
A Triplet-Learnt Coarse-to-Fine Reranking for Vehicle Re-identification
PublicationVehicle re-identification refers to the task of matching the same query vehicle across non-overlapping cameras and diverse viewpoints. Research interest on the field emerged with intelligent transportation systems and the necessity for public security maintenance. Compared to person, vehicle re-identification is more intricate, facing the challenges of lower intra-class and higher inter-class similarities. Motivated by deep...
-
A Triplet-learnt Coarse-to-Fine Reranking for Vehicle Re-identification
Publication -
Zero-Pole Space Mapping for CAD of Filters
PublicationIn this paper, we propose a new space-mapping technique tailored to the CAD of microwave filters. The goal of space mapping is to achieve a satisfactory design with the minimal number of fine model evaluations. In our approach, the filter is represented by a rational function. To quickly align the coarse and fine models, and to speed up the direct optimization of the coarse model, we propose matching the zeros and poles of a rational...
-
The effect of full-cell impregnation of pine wood (Pinus Sylvestris L.) on the fine dust content during sawing on a frame sawing machine
PublicationIn this paper the results of the analysis of the effect of the impregnation treatment of pine wood on the granularity of sawdust from the sawing process on the frame sawing machine PRW 15M are presented. Granulometric analyses of chips from impregnated and unimpregnated pine wood implies that the impregnation of pine wood does not affect the size and structure of the sawdust produced. A major ≈ 95% share of the formed chips is...
-
Self-compacting grout to produce two-stage concrete
PublicationTraditional concrete (TC) is primarily composed of a mixture of cement, fine and coarse aggregates, and water. TC is made by mixing together all the components before placing them. Using non-traditional concrete (two-stage concrete) to solve and to eliminate the problem of the aggregate segregation which appears in TC and in the self-compacting concrete. Two-stage concrete (TSC) consists of two main components, namely the grout...
-
Influence of heterogeneous air entry pressure on large scale unsaturated flow in porous media
PublicationThe paper presents numerical simulations of water infiltration in unsaturated porous media containing coarse-textured inclusions embed- ded in fine-textured background material. The calculations are performed using the two-phase model for water and air flow and a simplified model known as the Richards equation. It is shown that the Richards equation cannot correctly describe flow in the presence of heterogeneities. How- ever, its...
-
Self-compacting grout to produce two-stage concrete
PublicationTraditional concrete (TC) is primarily composed...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublicationIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
Effect of Thermal Treatment of Birch Wood by Saturated Water Vapor on Granulometric Composition of Chips from Sawing and Milling Processes from the Point of View of Its Processing to Composites
PublicationThe goal of this work is to investigate the impact of thermal modification of birch wood with saturated steam on the particle size distribution of the sawing and milling process. Birch wood (Betula pendula Roth) is an excellent source to produce plywood boards. Wastes from mechanical processing of birch wood are suitable to produce composite materials. Granulometric analyses of chips from sawing processes on the PRW 15M frame saw,...
-
A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs
PublicationThe emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
APPLICATION OF THE THEORY OF SEMI-MARKOV PROCESSES TO DETERMINE A LIMITING DISTRIBUTION OF THE PROCESS OF CHANGES OF ABILITY AND INABILITY STATES OF FUEL SUPPLY SYSTEMS IN HEAVY FUEL DIESEL ENGINES
PublicationThe paper presents applicability of the theory of semi-Markov processes to determine a limiting distribution of the process of changes of technical states of fuel systems for marine engines running on heavy fuel oils. The proposed study of this process includes the components of such fuel systems like: 1 - injectors, 2 - high pressure hoses, 3 - injection pumps, 4 - low pressure hoses, 5 – fine filters, 6 - coarse filters, 7 – fuel-feed...
-
Optical flow method for measuring deformation of soil specimen subjected to torsional shearing
PublicationIn this study optical flow method was used for soil small deformation measurement in laboratory tests. The main objective was to observe how the deformation distributes along the whole height of cylindrical soil specimen subjected to torsional shearing (TS test). The experiments were conducted on dry non-cohesive soil specimens under two values of isotropic pressure. Specimens were loaded with low-amplitude cyclic torque to analyze...
-
Structural Assessment of Reinforced Concrete Beams Incorporating Waste Plastic Straws
PublicationThe behavior of reinforced concrete beams containing fibers made of waste plastic straws (WPSs) under the three point bending test is examined. The effect of WPS fiber addition on the compressive and split tensile strength is reported. Four concrete mixes were prepared. The control mix PS-0 had a proportion of 1 cement: 1 sand: 2 coarse aggregate and a water cement ratio of 0.4. In the other three mixes PS-0.5, PS-1.5 and PS-3,...
-
Numerical Analysis of Recharge Rates and Contaminant Travel Time in Layered Unsaturated Soils
PublicationThis study focused on the estimation of groundwater recharge rates and travel time of conservative contaminants between ground surface and aquifer. Numerical simulations of transient water flow and solute transport were performed using the SWAP computer program for 10 layered soil profiles, composed of materials ranging from gravel to clay. In particular, sensitivity of the results to the thickness and position of weakly permeable...
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublicationThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
Standard and modified falling mass impact tests on preplaced aggregatefibrous concrete and slurry infiltrated fibrous concrete
PublicationAlthough several studies have been conducted to evaluate the impact response of concrete using theAmerican Concrete Institute (ACI) 544-2R falling mass impact test, the variations in test results are themain drawback of this testing method. This study aims to reduce the variations in experimental impacttest results by introducing two simple test setup modifications; (1) using coarse or fine aggregate bed-ding as an alternative...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Experimental and Numerical Analysis of Air Trapping in a Porous Medium with Coarse Textured Inclusions
PublicationThe paper presents a 2D upward infiltration experiment performed on a model porous medium consisting of fine sand background with two inclusions made of coarser sands. The purpose of the experiment was to investigate the effects of structural air trapping, which occurs during infiltration as a result of heterogeneous material structure. The experiment shows that a significant amount of air becomes trapped in each of the inclusions. Numerical...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Activated Tungsten Inert Gas Weld Characteristics of P91 Joint for Advanced Ultra Supercritical Power Plant Applications
PublicationActivated Tungsten Inert Gas (A-TIG) welding, a variant of tungsten inert gas (TIG) welding, was used for welding P91. In Generation IV power plants, P91 welds are prone to premature failure due to the presence and formation of brittle phases and creep at high temperatures. When performing A-TIG welding, the flux composition plays a role in the reversal of the Marangoni flow in the weld pool, which ultimately determines the level...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Direct design of Controlled Modulus Columns (CMC) based on in-situ testing
PublicationIn this paper, the serviceability limit state and bearing capacity of tension screw displacement piles were analyzed using the results of static pile load tests, carried out on the test plot near the Elbląg city, and field, and laboratory tests. The paper presents the methodology of determining the pile load-settlement curve using different types of t-z transfer functions. The new method of constructing the pile load-settlement...