Filters
total: 315
Search results for: fracture energy
-
Fracture Energy of Bonded Joints with 2D Elastic Adhesive Layer
PublicationWhen bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hooke elastic layer. In the case of 1D elastic layer, represented as Hookes spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint...
-
Accurate and continuous adhesive fracture energy determination using an instrumented wedge test
PublicationThe wedge test and the related double cantilever beam test are practical methods of assessing structural adhesive fracture energy. In the former, and to a lesser extent the latter, a recognised problem is the difficulty of following the length of the growing crack, required to calculate fracture energy with any accuracy. We present a novel method of measurement of crack length that has the advantages of being accurate and allowing...
-
Influence of energy absorbers on Malgaigne fracture mechanism in lumbar-pelvic system under vertical impact load
Publication -
Strain energy density and entire fracture surface parameters relationship for LCF life prediction of additively manufactured 18Ni300 steel
PublicationIn this study, the connection between total strain energy density and fracture surface topography is investigated in additively manufactured maraging steel exposed to low-cycle fatigue loading. The specimens were fabricated using laser beam powder bed fusion (LB-PBF) and examined under fully-reversed strain-controlled setup at strain amplitudes scale from 0.3% to 1.0%. The post-mortem fracture surfaces were explored using a non-contact...
-
Impact of interface heterogeneity on joint fracture
PublicationThe effects of heterogeneities (weak zones in particular) inadhesive joints and their importance on overall fracture propertiesare relatively unknown, but doubtlessly they may be crucial inmany applications. Using a model heterogeneous adhesive bond,represented by a given mixture of regions of strong and weakadhesion, we have studied the influence of interface variabilityon overall fracture energy (global energy release rate)....
-
Fracture in Asymmetric Bonded Joints
PublicationAdhesion was studied in asymmetric bonded joints using fracture mechanics tests. The asymmetric bonded joints consist of two different type and/or thickness materials bonded by an adhesive. Mentions of asymmetric bonded joint tests employed so far are rare in the literature. They are imperfect and therefore are not standardized. Accordingly three new tests were introduced in this work to study bonded joints. The new metrological...
-
Fracture in composite/aluminium joints of variable adhesive properties
PublicationA strain gauge technique recently developed with the wedge test, for estimating crack length and, thus, the fracture energy of structural adhesive bonding, has been employed on a system in which one adherend had two types of surface treatment. Simple polishing and polishing with subsequent sandblasting were the treatments used, with a distinct straight line, perpendicular to the sample edges, separating the two. Despite the clear-cut...
-
Reliable method of assessing fracture properties of asymmetric bonded joints
PublicationTwo methods of assessing fracture properties of adhesive joints were studied. Two wedge tests: with continuous deflection and with force measurements were compared. Asymmetric geometry of the bonded joint was considered, i.e. two different plates of aluminium alloys: Al-Cu and Al-Mg, were bonded with epoxy DGEBA adhesive. The analytical model is shown to estimate the values of fracture properties: crack position and critical fracture...
-
Investigation on Mode I Fracture Behavior of Hybrid Fiber-Reinforced Geopolymer Composites
PublicationRecent reports in the literature have shown that fber-reinforced geopolymer composites (FRGC) made with monofbers exhibit a signifcant enhancement in fracture energy. However, many aspects of the fracture performance of hybrid fberreinforced geopolymer composites (HFRGC) remain largely unexploited, and these are predominant for the structures. For the frst time, the mode I fracture energy of HFRGC is investigated. The mode I behavior...
-
Dynamic fracture of brittle shells in a space-time adaptive isogeometric phase field framework
PublicationPhase field models for fracture prediction gained popularity as the formulation does not require the specification of ad-hoc criteria and no discontinuities are inserted in the body. This work focuses on dynamic crack evolution of brittle shell structures considering large deformations. The energy contributions from in-plane and out-of-plane deformations are separately split into tensile and compressive components and the resulting...
-
Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation
PublicationThis study explores the monitoring of the fracture process in concrete beams and aims to characterize the evolution of damage in polyolefin fibre-reinforced concrete beams by utilizing the integrated application of two measurement techniques, digital image correlation and ultrasonic testing. The interpretation of registered wave time histories data was provided by the calculation of the magnitude-phase-composite metrics. An efficient...
-
Beam on elastic foundation with anticlastic curvature: Application to analysis of mode I fracture tests
PublicationA first order correction is proposed taking into account both interface elasticity and transverse anticlastic curvature of flexible substrate(s) in the DCB (and related tests). Adherends are represented by Kirchhoff-Love plates, and the interface by Winkler-type elastic foundation. Two functions are introduced, representing evolution of beam deflection along the sample midline and anticlastic curvature along the plate. A method...
-
The use of a two-phase Monte Carlo material model to reflect the dispersion of asphalt concrete fracture parameters
PublicationThe work covers comprehensive laboratory tests of semi-circular bending (SCB) of asphalt concrete samples. The results of two test series, including four and 32 SCB specimens, indicate a substantial scatter of force–deflection (F-d) histories. The numerical analysis is aimed to reflect the maximum breaking load and fracture energy of the samples, pointing out their random character. The original simulation-based fictitious Monte...
-
Comparative study on fracture evolution in steel fibre and bar reinforced concrete beams using acoustic emission and digital image correlation techniques
PublicationIn recent decades, the demand for sustainable construction practices has increased, but raw materials such as reinforcing steel remain scarce. Therefore, steel fibres have emerged as a popular and sustainable choice in the construction industry, offering a cost-effective alternative to traditional steel bar reinforcement for both flatwork and elevated structures. The purpose of this study is therefore to compare the performance...
-
MODELLING OF CUTTING BY MEANS OF FRACTURE MECHANICS
PublicationThe suitability of modern fracture mechanic theory was proved for the estimation of the cutting force and the cutting specific resistance. This paper shows modification of Ernst-Merchant theory and its application for determination some other properties of wood sample. This theory is acceptable for evaluation of shear yield stresses and shear plane angle. Sawing by gang saw machine was used as a process similar to the orthogonal...
-
Modelling of cutting by means of fracture mechanics
PublicationThe suitability of modern fracture mechanic theory was proved for the estimation of the cutting force and the cutting specific resistance. This paper shows modification of Ernst-Merchant theory and its application for determination some other properties of wood sample. This theory is acceptable for evaluation of shear yield stresses and shear plane angle. Sawing by gang saw machine was used as a process similar to the orthogonal...
-
Simulation of fracture process in fibrous concrete
PublicationArtykuł omawia wyniki modelowania procesu zarysowania w elementach betonowych zawierające stalowe włókna przy zastosowaniu dyskretnego modelu kratownicowego. Beton był modelowany na poziomie mezoskali z uwzględnieniem 5 faz: kruszywa, zaczynu cementowego, włókien i obu stref kontaktu. Obliczenia wykonano dla jednoosiowego ściskania oraz jednoosiowego rozciągania.
-
Fractal dimension for bending–torsion fatigue fracture characterisation
PublicationFracture surfaces after biaxial fatigue tests were compared using fractal dimension for three types of metallic materials in smooth and notched specimens made of S355J2 and 10HNAP steels and 2017-T4 aluminium alloy, considering both proportional and nonproportional cyclic loading. High-resolution optical 3D measurement studies were performed on the entire fracture surface. A direct correlation between fractal dimension and fatigue...
-
Numerical investigations on early indicators of fracture in concrete at meso-scale.
PublicationFracture is a major reason of the global failure of concretes. The understanding of fracture is important to ensure the safety of structures and to optimize the material behaviour. In particular an early prediction possibility of fracture in concretes is of major importance. In this paper, concrete fracture under bending was numerically analysed using the Discrete Element Method (DEM). The real mesoscopic structure of a concrete...
-
Lattice type fracture model for brittle materials
PublicationW artykule przedstawiono wyniki obliczeń propagacji rys w elementach betonowych przy zastosowaniu modelu dyskretnego opartego na ruszcie belkowym. Obliczenia wykonano dla różnych problemów brzegowych. W modelu przyjęto inne właściwości dla kruszywa, zaczynu cementowego oraz strefy kontaktu.
-
2D lattice model for fracture in brittle materials
PublicationW artykule przedstawiono wyniki obliczeń propagacji rys w elementach betonowych przy zastosowaniu modelu dyskretnego opartego na ruszcie belkowym. Obliczenia wykonano dla różnych problemów brzegowych.
-
A brief note on monotonic and fatigue fracture events investigation of thin-walled tubular austenitic steel specimens via fracture surface topography analysis (FRASTA)
PublicationThe main objective of this short communication is to show the fracture progression in each loading case and complement knowledge about fracture mechanisms underpinning the tensile and fatigue performance of thin-walled tubes. For this purpose, the fracture surface topography analysis (FRASTA) method was used in the thin-walled tubular austenitic stainless-steel specimens. Two cases were analyzed: monotonic tension, and uniaxial...
-
Antagonist adhesion effects due to variable substrate surface
PublicationThe effects of variability of intrinsic adhesion within a joint have been studied using a single cantilever beam (SCB) test. Fracture energy was found not to be a simple function of relative areas of 2 surface pre-treatments: a 'weak' zone decreased strength more than expected from simple, additive considerations. By severing the adhesive along the strong-weak transition, fracture energy increased.The prior antagonist effect appears...
-
Numerical simulation of asphalt mixtures fracture using continuum models
PublicationThe paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasicontinuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate...
-
Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing
PublicationThe paper focuses on researching the effect of fatigue loading on metallic structure, lifetime, and fracture surface topographies in AISI H13 steel specimens obtained by selective laser melting (SLM). The topography of the fracture surfaces was measured over their entire area, according to the entire total area method, with an optical three-dimensional surface measurement system. The fatigue results of the SLM 3D printed steel...
-
Profile and Areal Surface Parameters for Fatigue Fracture Characterisation
Publication -
Fractal dimension for bending–torsion fatigue fracture characterisation
Publication -
Numerical mesoscopic analysis of fracture in fine-grained concrete
PublicationArtykuł omawia wyniki analizy mezoskopowej procesu pękania w betonie podczas zginania. Obliczenia wykonano na poziomie mezo wykorzystując model degradacji sztywności z nielokalnym osłabieniem. Zbadano wpływ właściwości kruszywa, stref przejściowych, nacięcia oraz długości charakterystycznej mikrostruktury na zachowanie sie betonu.
-
3D DEM simulations of fracture in reinforced concrete beams
PublicationArtykuł dotyczy zachowania się belki żelbetowej bez zbrojenia pionowego przy trzypunktowym zginaniu. Belka uległa zniszczeniu wskutek ścinania z powodu obecności nadmiernego zbrojenia podłużnego. Eksperymenty przeprowadzono w skali laboratoryjnej z wykorzystaniem systemu mikro-CT, a następnie odtworzono je w analizach numerycznych stosując metodą elementów dyskretnych 3D (DEM). Zastosowano 4-fazowy model betonu z mezostrukturą,...
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in +20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in -20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Influence of Material Thickness on the Ductile Fracture of Steel Plates for Shipbuilding
PublicationIn the shipbuilding industry, the risk of brittle fractures is relatively high because some units operate in arctic or subarcticzones and use high thickness (up to 100 mm) steel plates in their structures. This risk is limited by employing certifiedmaterials with a specific impact strength, determined using the Charpy method (for a given design temperature) and byexercising control over the welding processes (technology qualification,...
-
Crack Resistance of Asphalt Concrete Subjected to Environmental Factors
PublicationThe paper presents an analysis of the influence of environmental factors on the cracking susceptibility of asphalt concrete resulting in a change in the durability of asphalt pavement. In order to assess the phenomenon, laboratory tests were carried out taking into account the destructive effects of moisture, freeze-thaw cycle and long-term ageing. The influence of both factors occurring simultaneously was also verified. Due to...
-
Application of fracture mechanics for energetic effects predictions while wood sawing
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (power) could be considered from a point of view of modern fracture mechanics. Cutting forces may be employed to determine not only toughness...
-
Fracture susceptibility of high RAP content asphalt concrete in terms of aging
PublicationDue to the reduction of CO2 emissions during the production of asphalt mixtures and the decrease in the demand for mineral resources, the addition of reclaimed asphalt pavement (RAP) is becoming indispensable. The durability of asphalt pavements containing a high RAP content may be reduced due to a decrease in the cracking resistance of the material, especially under the influence of operational aging. The article presents the...
-
Application of Fracture Mechanics for Energetic Effects Predictions While Wood Sawing
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (or power - more interesting from energetic point of view) could be considered from a point of view of modern fracture mechanics. Cutting...
-
Comment on permeability conditions in finite element simulation of bone fracture healing
PublicationThe most popular model of the bone healing considers the fracture callus as poroelastic medium. As such it requires an assumption of the callus’ external permeability. In this work a systematic study of the influence of the permeability of the callus boundary on the simulated bone healing progress is performed. The results show, that these conditions starts to play significant role with the decrease of the callus size. Typically...
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in -60°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in +20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in -40°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in -50°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in -20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture toughness test in 0°C
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture toughness test in 20°C
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture toughness test in -20°C
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
4-Point beam tensile test on a soft adhesive
PublicationAn adhesive butt joint with a soft bondline has been studied. A series of experiments was conducted on test pieces constituted of aluminium adherends bonded with a low modulus epoxy adhesive, ScotchWeld™ 2216. The joint was subjected to four point bending, in tension/compression loading, under constant deflection rate, with the bondline being parallel to the applied load. The objective was to examine and evaluate crack nucleation...
-
Mechanical properties of VL E27 steel for shipbuilding – 3D model of fracture (test in +20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – 3D model of fracture (test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....