Filters
total: 5359
filtered: 916
-
Catalog
- Publications 2214 available results
- Journals 2 available results
- People 133 available results
- Inventions 7 available results
- Projects 10 available results
- Laboratories 2 available results
- Research Teams 5 available results
- Research Equipment 27 available results
- e-Learning Courses 988 available results
- Events 51 available results
- Open Research Data 1920 available results
Chosen catalog filters
Search results for: fosfoniany kaliks[4]arenu
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 180 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Complete input data to CFD 3D model of combustion in the large marine 4-stroke engine
Open Research DataInput data to CFD and 3D model of combustion process for large marine 4-stroke diesel engine.
-
Adiabatic potential energy curves of the 3, 4 and 5^1Σ^+ excited states of LiCs molecule
Open Research DataAdiabatic potential energy curves of the 3, 4, and 5^1Σ^+ excited states have been calculated for the LiCs molecule. The results of three excited states of the symmetry Σ^+ have been obtained by the nonrelativistic multireference configuration interaction (MRCI) method used with pseudopotentials describing the interaction of valence electrons with atomic...
-
Towards Compact City – Gdańsk-Osowa district case study, proposal no 4, January 2021
Open Research DataThe data presents results of work within the participatory planning process: Towards Compact City – Gdańsk-Osowa district case study, proposal no 4, from January 2021. The goal of the process was to present the new, innovative design visions for the area located in Gdańsk-Osowa district in the context of “Compact city” and “Walkable city” ideas. The...
-
Towards Compact City 2.0 – Gdańsk-Osowa district case study, proposal no 4, February 2022
Open Research DataThe data presents results of work within the participatory planning process: Towards Compact City – Gdańsk-Osowa district case study, proposal no 4, from February 2022. The result/ aim of the process was to present the new, innovative design visions for the area located in Gdańsk-Osowa district in the context of land use plan. The participatory methodology...
-
Błaszki 2021- video data - pedestrian, bicycles, vehicles
Open Research DataBłaszki 2021- video data - pedestrian, bicycles, vehicles
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.4
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 4 using oriented Gaussian beams
Open Research DataThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
District development concept – Lower Sopot (Dolny Sopot) district case study, study proposal no 4, May 2021
Open Research DataThe data presents results of work within the studies of the concept of development of the district in the context of the city, Lower Sopot (Dolny Sopot) district, study proposal no 4, from May 2021. The goal of the research process was to present the development concept of the area located in Lower Sopot (Dolny Sopot) district in the context of the...
-
Values and problems analysis – Lower Sopot (Dolny Sopot) district case study, study proposal no 4, March 2021
Open Research DataThe data presents results of work within the studies of the development possibilities of the district in the context of the city, Lower Sopot (Dolny Sopot) district, study proposal no 4, from March 2021. The goal of the research process was to present the values and problems analysis of the area located in Lower Sopot (Dolny Sopot) district in the context...
-
Functional and spatial structure analysis – Lower Sopot (Dolny Sopot) district case study, study proposal no 4, February 2021
Open Research DataThe data presents results of work within the studies of the conditions of the district in the context of the city, Lower Sopot (Dolny Sopot) district, study proposal no 4, from February 2021. The goal of the research process was to present the functional and spatial structure analysis of the area located in Lower Sopot (Dolny Sopot) district in the...
-
Vision of the development of transformations in the district – Lower Sopot (Dolny Sopot) district case study, study proposal no 4, April 2021
Open Research DataThe data presents results of work within the studies of the vision of the district in the context of the city, Lower Sopot (Dolny Sopot) district, study proposal no 4, from April 2021. The goal of the research process was to present the future image of the neighborhood and initial ideas of the development of transformations of the area located in Lower...
-
Ultrasonic wave propagation, digital image correlation and X-ray micro-computed tomography measurements of concrete during splitting (cube #4)
Open Research DataThe DataSet contains the results of the mechanical behaviour of a concrete cube under the splitting test. The cube had dimensions 70 x 70 x 70 cm3 and was made of concrete with the following ingredients: cement type CEM I 42.5R (330 kg/m3), water (165 kg/m3), aggregate 0/2 mm (710 kg/m3), aggregate 2/8 mm (664 kg/m3), aggregate 8/16 mm (500 kg/m3),...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,75 V at 241 mA. Sample 24, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,75 V and discharged to 10 mV by constant current 241 mA, experiment run #4.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,1 V at 561 mA. Sample 71, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,1 V and discharged to 10 mV by constant current 561 mA. Sample 71, experiment run #4.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 204 mA. Sample 51, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 204 mA. Experiment run #4. This experiment was preceded by experiment 10.34808/jf84-x137. The images were taken with thermographic camera VigoCAM V50....
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 306 mA. Sample 51, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 306 mA. Experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform...
-
Dataset of non-isomorphic graphs of the coloring types (Km,K3-e;n), 4<m<8, 1<n<R(Km,K3-e)
Open Research DataFor Km and K3-e graphs, a coloring type (Km,K3-e;n) is such an edge coloring of the full Kn graph, which does not have the Km subgraph in the first color (representing by no edges in the graph) or the K3-e subgraph in the second color (representing by edges in the graph). K3-e means the full Km graph with one edge removed.The Ramsey number R(Km,K3-e)...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #4. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 4 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 4 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
The database of localization and expression of aquaporin 3 (AQP3), aquaporin 7 (AQP7) and aquaporin 9 (AQP9) in the male reproductive system in cattle. Morphometric studies. Localization of zinc finger transcription factor GATA-4.
Open Research DataThe data present research results being part of the OPUS-22 project entitled “In search of new markers of male fertility in cattle. Aquaporins expression in the reproductive organs and sperm of the bulls (Bos taurus)” obtained from the National Science Center in Poland (grant no. 2021/43/B/NZ9/00204). The aim of this part of the project was (i) to determine...
-
Inventory of the historic fences in Gdańsk-Wrzeszcz district, stage between the 2010-2015.
Open Research DataThe data presents architectural survey and inventory documentation of the historic fences in Gdańsk-Wrzeszcz district, stage from the period between 2010-2015. The survey and inventory works of architectural details at the turn of the 19th and 20th centuries are documented in the form of inventory drawings prepared by students of the Faculty of Architecture,...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.