Filtry
wszystkich: 1327
wybranych: 228
Wyniki wyszukiwania dla: PLATE VIBRATION FREQUENCIES
-
Mode shapes of a beam and plate with defects, obtained by experimental modal analysis
Dane BadawczeThe DataSet contains the experimental results of the first mode shape for a beam and a plate.
-
The influence of external interference on AFM imaging, the use of a protective helmet
Dane BadawczeThis collection is of purely practical importance, showing how the presence of external disturbances can adversely affect the quality of imaging with an atomic force microscope. For this reason, it is also advisable to provide a link to a workshop-like study [1] as well as a huge number of commercial solutions available after entering the keyword "AFM...
-
Nonlinear impedance as a function of A.C. voltage for glass 40Bi2VO5.5-60SrB4O7 annealed at 473 K for 3h and next fully crystallized measured with impedance spectroscopy method at high temperature region
Dane BadawczeThe nonlinear electrcial properties as a function of A.C. voltage for annealed at 473 K for 3h and next fully crystallized 40Bi2VO5.5-60SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for fully crystallized 35Bi2VO5.5-65SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Dane BadawczeThe nonlinear electrcial properties as a function of A.C. voltage for fully crystallized 35Bi2VO5.5-65SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Dane BadawczeThe nonlinear electrcial properties as a function of A.C. voltage for annealed and next fully crystallized 50Bi2VO5.5-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for glass 40Bi2VO5.5-60SrB4O7 annealed at 593 K and next fully crystallized measured with impedance spectroscopy method at high temperature region
Dane BadawczeThe nonlinear electrcial properties as a function of A.C. voltage for annealed at 593 K and next fully crystallized 40Bi2VO5.5-60SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance as a function of A.C. voltage for fully crystallized 45Bi2VO5.5-55SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Dane BadawczeThe nonlinear electrcial properties as a function of A.C. voltage for fully crystallized 45Bi2VO5.5-55SrB4O7 glass was measured by impedance spectroscopy method.
-
Vibration data for 1205 EKTN9 bearings
Dane BadawczeThe data contains measurements of vibration obtained with VIBstand manufactured by EC systems.
-
Stability of steel plate girder with alternative web geometry
Dane BadawczeThe main aim of this study is to determine the influence of an alternative geometry of plate girder cross-section on web stability. The proposed modification of geometry consists in application of a variable web thicknesses along its height in order to reduce the number of transverse and longitudinal stiffeners along the length of the plate girder....
-
Vibration signals collected for concrete beams with GFRP reinforcement subjected to elevated temperatures (120C-240C)
Dane BadawczeThe dataset contains the time domain signals obtained during dynamic tests of concrete beams reinforced with GFRP bars. The vibration were induced with the use of modal hammer, while the signals were collected by the accelerometers attached at the beam surface. The signals were captured before and after subjecting the concrete beams to elevated temperatures.
-
Sepulchral plate of James von Werden in St. Mary's Church in Gdańsk
Dane BadawczeThe data set concerns epigraphy. It refers to the It refers to the sepulchral plate placed in St. Mary’s Church in Gdańsk which is dedicated to James von Werden, a rich merchant, a provisor of St. Mary Church in Gdańsk, father of Mayor John von Werden, a founder of this sepulchral plate. The data set contains one general photo of the sepulchral plate,...
-
Sepulchral plate of Dorothy and Matthias Zimmermann in St. Mary's Church in Gdańsk
Dane BadawczeThe data set concerns epigraphy. It refers to the sepulchral plate placed in St. Mary’s Church in Gdańsk which is dedicated to Dorothy and Matthias Zimmermann, a wealthy merchant and Gdańsk mayor, trusted courtier of King Alexander Jagiellon. The data set contains one general photo of the sepulchral plate, transcription of its text in Latin, its Polish...
-
Sepulchral plate of Thomas Tympfius in St. Mary's Church in Gdańsk
Dane BadawczeThe data set concerns epigraphy. It refers to the sepulchral plate placed in St. Mary’s Church in Gdańsk which is dedicated to Thomas Tympfius, a minter who, together with his brother Andrew, rented several mints in the Kingdom of Poland, and gave his name to the timpf - the silver zloty released by the Tympfius mint. Unfortunately, as a result of...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09A - full-run
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - pre-run
Dane BadawczeVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
Bending test results of first metatarsophalangeal joint after arthrodesis with medially or dorsally positioned locking plate and lag screw.
Dane BadawczeThe Dataset contains the results of the bending test of first metatarsophalangeal (MTP1) joint specimens after arthrodesis.
-
Displacements of bones during bending test of first metatarsophalangeal joint after arthrodesis with medially or dorsally positioned locking plate and lag screw.
Dane BadawczeThe Dataset contains the values of displacements of bone control points during the bending test of first metatarsophalangeal (MTP1) joint specimens after arthrodesis.
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - 3D fracture scan
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
Nonlinear impedance as a function of A.C. voltage and temperature for Bi2VO5.5 ceramic of thickness 2.52 mm (after first heat-treatment at 913 K) was measured at different frequencies with impedance spectroscopy method
Dane BadawczeThe nonlinear electrical properties of Bi2VO5.5 ceramic of thickness 2.52 mm was measured by impedance spectroscopy method.
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 60mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 60 mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50 mm) - CMOD - force record, a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
DLC coating in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Dane BadawczeWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....