Filtry
wszystkich: 1218
wybranych: 949
Wyniki wyszukiwania dla: COMPACT IMPEDANCE TRANSFORMERS
-
Design of quarter-wave compact impedance transformers using coupled transmission lines
PublikacjaPrzedstawiono porównanie wyników symulacji jedno i wielosekcyjnych transformatorów impedancji budowanych w postaci struktur wykorzystujących idealnenie sprzężone linie transmisyjne, idealne sprzężone symetryczne linie transmisyjne oraz rzeczywiste sprzężone linie mikropaskowe. Pokazano, że możliwa jest konstrukcja transformatorów impedancji o bardzo dobrych parametrach technicznych wykorzystująca sprzężone linie mikropaskowe, pomimo...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublikacjaDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Cost-efficient simulation-driven design of compact impedance matching transformers
PublikacjaIn this paper, an algorithmic framework for cost-efficient design optimization of miniaturized impedance matching transformers has been presented. Our approach exploits a bottom-up design that involves translating the overall design specifications for the circuit at hand to its elementary building blocks (here, compact microstrip resonant cells, CMRCs), as well as fast surrogate-assisted optimization of the cells followed by simulation-based...
-
Multi-objective optimization of compact UWB impedance matching transformers using Pareto front exploration and adjoint sensitivities
PublikacjaIn this paper, a technique for fast multi-objective optimization of impedance matching transformers has been presented. In our approach, a set of alternative designs that represent the best possible trade-offs between conflicting objectives (here, the maximum reflection level within a frequency band of interest and the circuit size) is identified by directly exploring the Pareto front. More specifically, the subsequent Pareto-optimal...
-
Multi-objective design of miniaturized impedance transformers by domain segmentation
PublikacjaFast multi-objective design optimization of compact microstrip impedance transformers is discussed. Our approach exploits approximation models constructed using sampled coarse- mesh EM simulation data in a partitioned design space and response correction techniques for design refinement. Demonstra
-
Response features for fast EM-driven design of miniaturized impedance matching transformers
PublikacjaA framework for low-cost EM-driven design optimization of compact impedance matching transformers is presented. Our technique is based on a bottom-up design where design requirements for the transformer circuit are translated into specifications for its building blocks. These elementary cells are optimized using response features. Subsequently, the entire circuit is fine-tuned using local response surface approximation models and...
-
EM-Driven Multi-Objective Design of Impedance Transformers By Pareto Ranking Bisection Algorithm
PublikacjaIn the paper, the problem of fast multi-objective optimization of compact impedance matching transformers is addressed by utilizing a novel Pareto ranking bisection algorithm. It approximates the Pareto front by dividing line segments connecting the designs found in the previous iterations, and refining the obtained candidate solutions by means of poll-type search involving Pareto ranking. The final Pareto set is obtained using...
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublikacjaPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Surrogate modeling of impedance matching transformers by means of variable‐fidelity electromagnetic simulations and nested cokriging
PublikacjaAccurate performance evaluation of microwave components can be carried out using full‐wave electromagnetic (EM) simulation tools, routinely employed for circuit verification but also in the design process itself. Unfortunately, the computational cost of EM‐driven design may be high. This is especially pertinent to tasks entailing considerable number of simulations (eg, parametric optimization, statistical analysis). A possible...
-
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers
PublikacjaFull-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical...
-
Rapid Simulation-Driven Multiobjective Design Optimization of Decomposable Compact Microwave Passives
PublikacjaIn this paper, a methodology for fast multiobjective optimization of the miniaturized microwave passives has been presented. Our approach is applicable to circuits that can be decomposed into individual cells [e.g., compact microstrip resonant cells (CMRCs)]. The structures are individually modeled using their corresponding equivalent circuits and aligned with their accurate, EM simulated...
-
Rapid optimization of compact microwave passives using kriging surrogates and iterative correction
PublikacjaDesign of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects,...
-
A novel dual-band rectifier circuit with enhanced bandwidth for RF energy harvesting applications
PublikacjaIn recent years, a rapid development of low-power sensor networks, enabling machine-to-machine communication in applications such as environmental monitoring, has been observed. Contemporary sensors are normally supplied by an external power source, typically in a form of a battery, which limits their lifespan and increases the maintenance costs. This problem can be addressed by harvesting and converting ambient RF energy into...
-
Accelerated design optimization of miniaturized microwave passives by design reusing and Kriging interpolation surrogates
PublikacjaElectromagnetic (EM) analysis has become ubiquitous in the design of microwave components and systems. One of the reasons is the increasing topological complexity of the circuits. Their reliable evaluation—at least at the design closure stage—can no longer be carried out using analytical or equivalent network representations. This is especially pertinent to miniaturized structures, where considerable EM cross-coupling effects occurring...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublikacjaA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
Rapid multi-objective design optimization of miniaturized impedance transformer by Pareto front exploration
PublikacjaFast multi-objective optimization of compact impedance transformer is discussed. A set of alternative designs representing possible trade-offs between conflicting design criteria, i.e., electrical performance (here, wideband matching) and the structure size, is obtained through Pareto front exploration by means of surrogate-assisted methods.
-
Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communications
PublikacjaIn this paper, a structure and design procedure of a novel compact dual-polarized corrugated horn antenna with high gain and a stable phase center for satellite communication is presented. The antenna incorporates an Ortho-Mode Transducer (OMT), a mode converter, and a corrugated structure. The compact OMT section is designed to be fed by standard WR-75 waveguides. The proposed compact design utilizes only ten corrugated slots...
-
Power Electronics Building Blocks for implementing Smart MV/LV Distribution Transformers for Smart Grid
PublikacjaWith an observed increase in the involvement of active consumers in activities aimed at improving energy efficiency and increasing interest in producing energy from renewable sources, there is a need for the development of new technologies enabling the distribution network operators to offer new services and functionalities. Smart MV/LV distribution transformers are characterized by a compact three-stage design, including an...
-
Low-cost multi-objective design of compact microwave structures using domain patching
PublikacjaA good compromise between size and electrical performance is an important design consideration for compact microwave structures. Comprehensive information about size/performance trade-offs can be obtained through multi-objective optimization. Due to considerable electromagnetic (EM) cross-couplings in highly compressed layouts, the design process has to be conducted at the level of high-fidelity EM analysis which is computationally...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublikacjaA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
A Concept and Design Optimization of Compact Planar UWB Monopole Antenna
PublikacjaA novel structure concept of a compact UWB monopole antenna is introduced together with a low-cost design optimization procedure. Reduced footprint is achieved by introduction of a protruded ground plane for current path increase and a matching transformer to ensure wideband impedance matching. All geometrical parameters of the structure are optimized simultaneously by means of surrogate based optimization involving variable-fidelity...
-
Excitation of Circularly Polarized Wave via Single-Feed Metasurface-Integrated Compact Antenna for Internet of Things
PublikacjaA compact circularly polarized (CP) quasi-omnidirectional antenna is introduced for internet of things (IoT). The structure consists of two components implemented on FR-4 substrates, and sep-arated by an air gap: one printed with a rectangular patch fed through a matching network, and another with a metasurface and a ground plane. Two different methods for impedance matching are employed. An equivalent circuit model of the antenna...
-
Design and optimization of a novel compact broadband linearly/circularly polarized wide-slot antenna for WLAN and Wi-MAX applications
PublikacjaA novel topologically modified structure of a compact low profile wide-slot antenna for broadband applications is presented. The antenna comprises a modified E-shaped slot with unequal arm lengths in the ground plane, and a parasitic quasi-rectangular loop placed coplanar with the feedline. For exciting orthogonal modes with equal amplitude, a single-point feeding technique with an asymmetrical geometry of the coplanar waveguide...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublikacjaAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
Strategies for computationally feasible multi-objective simulation-driven design of compact RF/microwave components
PublikacjaMulti-objective optimization is indispensable when possible trade-offs between various (and usually conflicting) design objectives are to be found. Identification of such design alternatives becomes very challenging when performance evaluation of the structure/system at hand is computationally expensive. Compact RF and microwave components are representative examples of such a situation: due to highly compressed layouts and considerable...
-
A Geometrically Simple Compact Wideband Circularly Polarized Antenna
PublikacjaA compact broadband wide-slot circular polarization (CP) antenna is proposed. An inverted L-shape parasitic strip at the open end of a microstrip line extension and a slot modification is applied to attain wideband CP. The advantage of this technique is simplicity which makes it readily re-designable for different frequency bands. To demonstrate the concept, three designs working at different frequencies are obtained. The redesign...
-
A method of measuring RLC components for microcontroller systems
PublikacjaA new method of measuring RLC components for microcontroller systems dedicated to compact smart impedance sensors based on a direct sensor-microcontroller interface is presented. In the method this direct interface composed of a reference resistor connected in series with the tested sensor impedance is stimulated by a square wave generated by the microcontroller, and then its voltage response is sampled by an internal ADC of the...
-
Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization
PublikacjaA conventional compact microstrip resonant cell (CMRC)has been thoroughly investigated to enhance its slow-wave properties and subsequently ensure an efficient miniaturization of a microstrip circuit. The geometry of a classic CMRC has been improved in terms of slowwave effect in two progressive steps: (i) a single-element topology has been replaced with a double-element one and (ii) a high-impedance section has been refined by...
-
Nested Kriging Surrogates for Rapid Multi-Objective Optimization of Compact Microwave Components
PublikacjaA procedure for rapid EM-based multi-objective optimization of compact microwave components is presented. Our methodology employs a recently developed nested kriging modelling to identify the search space region containing the Pareto-optimal designs, and to construct a fast surrogate model. The latter permits determination of the initial Pareto set, further refined using a separate surrogate-assisted process. As an illustration,...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublikacjaDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublikacjaA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Rapid Re-Design and Bandwidth/Size Trade-Offs for Compact Wideband Circular Polarization Antennas Using Inverse Surrogates and Fast EM-Based Parameter Tuning
PublikacjaDesign of compact wideband circularly polarized (CP) antennas is challenging due to the necessity of simultaneous handling of several characteristics (reflection, axial ratio, gain) while maintaining a small size of the structure. Antenna re-design for various operating bands is clearly more difficult yet practically important because intentional reduction of the bandwidth (e.g., by moving the lower edge of the operating band up...
-
Explicit Size-Reduction-Oriented Design of a Compact Microstrip Rat-Race Coupler Using Surrogate-Based Optimization Methods
PublikacjaIn this paper, an explicit size reduction of a compact rat-race coupler implemented in a microstrip technology is considered. The coupler circuit features a simple topology with a densely arranged layout that exploits a combination of high- and low-impedance transmission line sections. All relevant dimensions of the structure are simultaneously optimized in order to explicitly reduce the coupler size while maintaining equal power...
-
Design and Optimization of a Compact Super-Wideband MIMO Antenna with High Isolation and Gain for 5G Applications
PublikacjaThis paper presents a super-wideband multiple-input multiple-output (SWB MIMO) antenna with low profile, low mutual coupling, high gain and compact size for microwave and millimeter wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical size of 20 × 20 × 0.787 mm3. The combination of both square and elliptical shapes results in an exceptionally broad impedance...
-
Low-Cost Surrogate Modeling of Miniaturized Microwave Components Using Nested Kriging
PublikacjaIn the paper, a recently reported nested kriging methodology is employed for modeling of miniaturized microwave components. The approach is based on identifying the parameter space region that contains high-quality designs, and, subsequently, rendering the surrogate in this subset. The results obtained for a miniaturized unequal-power-split rat-race coupler and a compact three-section impedance transformer demonstrate reliability...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublikacjaA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Space-mapping-based design flow of miniaturized broadband matching transformer with perforated metallization
PublikacjaA fast design procedure of unconventional passive components has been presented and experimentally validated on the basis of a wideband microstrip four-section matching transformer (50:6 OHm). A classic impedance matching circuit has been miniaturized by means of compact microstrip resonant cells (CMRCs) leading to a considerable length reduction (34%) together with minor degradation in its performance. The spacemapping-based design...
-
Design and optimization of a novel miniaturized low-profile circularly polarized wide-slot antenna
PublikacjaThis paper presents a novel structure of a compact circularly polarized (CP) antenna. CP is obtained using a parasitic quasi-rectangular strip placed coplanar to the feedline. A ground plane perturbation combined with the asymmetric geometry of the coplanar waveguide ground planes is utilized to excite additional CP modes. All antenna dimensions are rigorously optimized to achieve the best possible performance in terms of the impedance...
-
A Compact Circularly Polarized Antenna With Directional Pattern for Wearable Off-Body Communications
PublikacjaThis letter presents a geometrically simple and compact circularly polarized (CP) antenna with unidirectional radiation characteristics for off-body communications. The proposed antenna is based on a microstrip line monopole extension from a coplanar waveguide (CPW) and a protruded stub from one side of the coplanar ground plane along the length of the monopole. The orthogonal components of equal amplitudes required for circular...
-
Doubly miniaturized rat-race hybrid coupler
PublikacjaTwo complementary miniaturization techniques have beenapplied to reduce the size of a rat-race hybrid coupler: (i) conventional microstrip sections have been replaced with their diminished lowimpedance counterparts as the first step of size reduction and (ii) novel fractal-shaped compact microstrip resonant cells dedicated to efficiently shorten low-impedance transmission line segments have been implemented as the second step of...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublikacjaDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
Half-Order Modeling of Saturated Synchronous Machine
PublikacjaNoninteger order systems are used to model diffusion in conductive parts of electrical machines as they lead to more compact and knowledge models but also to improve their precision. In this paper a linear half-order impedance model of a ferromagnetic sheet deduced from the diffusion of magnetic field is briefly introduced. Then, from physical considerations and finite elements simulation, the nonlinear half-order impedance model...
-
A Compact Circularly Polarized Dielectric Resonator Antenna with MIMO Characterizations for UWB Applications
PublikacjaUltra-wideband (UWB) technology is extensively used in indoor navigation, medical applications, and Internet of Things (IoT) devices due to its low power consumption and resilience against multipath fading and losses. This paper examines a multiple input multiple-output (MIMO), circularly polarized (CP) dielectric resonator antenna (DRA) for UWB systems. Compact form factor, high gain, wideband response, improved port isolation,...
-
Design of a Coplanar Waveguide-Fed Wideband Compact-Size Circularly Polarized Antenna and polarization-sense alteration
PublikacjaThis paper presents the design and validation of a geometrically simple circularly polarized(CP) structure featuring flat gain in the sub-6 GHz 5th generation spectrum. The proposed structure is based on coplanar-waveguide-fed, modified wide slot etched in the ground plane. For generating CP waves, the coplanar ground planes are designed with slight asymmetry in both the horizontal and vertical directions. Furthermore, the ground...
-
A Broadband Circularly Polarized Wide-Slot Antenna with a Miniaturized Footprint
PublikacjaThis letter presents a novel and simple feeding technique for exciting orthogonal components in a wide-slot antenna. In this technique, a rectangular bracket-shape parasitic strip is placed at the open end of the straight microstrip line to excite the fundamental horizontal and vertical components of the circular polarization (CP). The proposed technique—when employed in conjunction with the asymmetrical geometry of coplanar waveguide...
-
Constrained optimization for generating gain-bandwidth design trade-offs of wideband unidirectional antennas
PublikacjaBroadband unidirectional antennas realised in microstrip technology find applications in many wireless communication systems. One of their design challenges is the necessity of handling multiple performance figures which is difficult when using traditional design methods, largely based on parameter sweeping. This work presents a simple optimisation-based framework that permits generation of gain-bandwidth trade-off designs for...
-
Millimeter Wave Wideband and Low-Loss Compact Power Divider Based on Gap Waveguide: For Use in Wideband Antenna Array System
PublikacjaThis paper presents a wideband and low-loss design of a compact power divider based on gap waveguide technology. The proposed power divider consists of two adjacent E-plane groove gap waveguide and a small ridge section to couple and equally divide the EM energy from the input E-plane groove gap waveguide to the two output ones in-phase. The simulation results show that the proposed waveguide power divider has about 40% impedance...
-
Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models
PublikacjaEver increasing performance requirements make the design of contemporary antenna systems a complex and multi-stage process. One of the challenges, pertinent to the emerging application areas but also some of the recent trends (miniaturization, demands for multi-functionality, etc.), is the necessity of handling several performance figures such as impedance matching, gain, or axial ratio, often over multiple frequency bands. The...
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublikacjaThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Novel Coplanar-Strip-Based Excitation Technique for Design of Broadband Circularly Polarization Antennas with Wide 3-dB Axial Ratio Beamwidth
PublikacjaIn this paper, a novel excitation technique for design of a single-point-fed compact low-profile wide-slot antennas with broadband circular polarization (CP) and wide 3 dB axial ratio (AR) beamwidth is presented. Two inverted L-shape parasitic strips placed coplanar to the microstrip line of an asymmetric CPW, and a horizontal strip that protrudes from the vertical edge of the backside ground plane of the substrate are used for...