Filtry
wszystkich: 1991
-
Katalog
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: discrete green's function
-
Green`s function methods for Mathematical modeling of unidirectional diffusion process in isothermal metals bonding process
PublikacjaPodano wykorzystanie funkcji Greena w rozwiązaniu matematycznego modelu dyfuzji jednowymiarowej podczas izotermicznego łączenia metali.
-
Magnetizability of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
PublikacjaThe Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\/~Szmytkowski, J.\ Phys.\ B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive a closed-form expression for the magnetizability of an arbitrary discrete state of the relativistic one-electron atom with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric...
-
Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac–Coulomb Green function
PublikacjaWe present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Ze. Calculations are...
-
Acceleration of the discrete Green's function computations
PublikacjaResults of the acceleration of the 3-D discrete Green's function (DGF) computations on the multicore processor are presented. The code was developed in the multiple precision arithmetic with use of the OpenMP parallel programming interface. As a result, the speedup factor of three orders of magnitude compared to the previous implementation was obtained thus applicability of the DGF in FDTD simulations was significantly improved.
-
Accuracy of the discrete Green's function computations
PublikacjaThis paper discusses the accuracy of the discrete Green's function (DGF) computations. Recently closed-form expression of the DGF and its efficient numerical implementation were presented which facilitate the DGF applications in FDTD simulations of radiation and scattering problems. By carefully comparing the DGF results to those of the FDTD simulation, one can make conclusions about the range of the applicability of the DGF for...
-
FDTD-Compatible Green's function based on scalar discrete Green's function and multidimensional Z-transform
PublikacjaIn this contribution, a new formulation of the discrete Green's function (DGF) is presented for the finitedifference time-domain (FDTD) grid. Recently, dyadic DGF has been derived from the impulse response of the discretized scalar wave equation (i.e., scalar DGF) with the use of the multidimensional Z-transform. Its software implementation is straightforward because only elementary functions are involved and a single function...
-
Windowing of the Discrete Green's Function for Accurate FDTD Computations
PublikacjaThe paper presents systematic evaluation of the applicability of parametric and nonparametric window functions for truncation of the discrete Green's function (DGF). This function is directly derived from the FDTD update equations, thus the FDTD method and its integral discrete formulation can be perfectly coupled using DGF. Unfortunately, the DGF computations require processor time, hence DGF has to be truncated with appropriate...
-
Hybridization of the FDTD method with use of the discrete Green's function
PublikacjaIn this contribution, a hybrid technique is presented which combines the finite-difference time-domain (FDTD) method and the discrete Green's function (DGF) formulation of this method. FDTD is a powerful technique for the analysis of complex penetrable objects but its application is not efficient when the computational domain includes many free-space cells. Therefore, the hybrid method was developed which is applicable to complex...
-
Accuracy of the Discrete Green's Function Formulation of the FDTD Method
PublikacjaThis paper reports an evaluation of the accuracy of the discrete Greens function (DGF) formulation of the finite-difference time-domain (FDTD) method. Recently, the closed-form expression for the DGF and its efficient numerical implementation were presented, which facilitates applications of the DGF in FDTD simulations of radiation and scattering problems. So far, the accuracy of the DGF formulation of the FDTD method has been...
-
FDTD Simulations on Disjoint Domains with the Use of Discrete Green's Function Diakoptics
PublikacjaA discrete Green's function (DGF) approach to couple disjoint domains in the finite-difference time-domain (FDTD) grid is developed. In this method, total-field/scattered-field (TFSF) FDTD domains are associated with simulated objects whereas the interaction between them is modeled with the use of the DGF propagator. Hence, source and scatterer are simulated in separate domains and updating of vacuum cells, being of little interest,...
-
Applications of the discrete green's function in the finite-difference time-domain method
PublikacjaIn this paper, applications of the discrete Green's function (DGF) in the three-dimensional (3-D) finite-difference time-domain (FDTD) method are presented. The FDTD method on disjoint domains was developed employing DGF to couple the subdomains as well as to compute the electromagnetic field outside these subdomains. Hence, source and scatterer are simulated in separate subdomains and updating of vacuum cells, being of little...
-
Recurrence scheme for FDTD-compatible discrete Green's function derived based on properties of Gauss hypergeometric function
PublikacjaIn this paper, the formulation of one-dimensional FDTD (Finite-difference time-domain)-compatible discrete Green's function (DGF) is derived based on the Gauss hypergeometric function (GHF). The properties of GHF make it possible to derive the recurrence scheme only in the time domain for the DGF generation. Furthermore, this recurrence scheme is valid for any stable time-step size and can be implemented using standard numerical...
-
Exact modal absorbing boundary condition for waveguide simulations - discrete Green's function approach
PublikacjaA modal absorbing boundary condition (ABC) based on the discrete Green's function (DGF) is introduced and applied for termination of waveguides simulated by means of the finite-difference time-domain (FDTD) method. The differences between the developed approach and implementations already demonstrated in the literature are presented. By applying DGF, a consistent theoretical approach to modal ABC in the FDTD method is obtained....
-
Discrete Green's function approach to disjoint domain simulations in 3D FDTD method
PublikacjaA discrete Green’s function (DGF) approach to couple 3D FDTD subdomains is developed. The total-field/scattered-field subdomains are simulated using the explicit FDTD method whilst interaction between them is computed as a convolution of the DGF with equivalent current sources measured over Huygens surfaces. In the developed method, the DGF waveforms are truncated using the Hann’s window. The error varies in the range -65 to -40...
-
Hybrid Technique Combining the FDTD Method and Its Convolution Formulation Based on the Discrete Green's Function
PublikacjaIn this letter, a technique combining the finite-difference time-domain (FDTD) method and its formulation based on the discrete Green's function (DGF) is presented. The hybrid method is applicable to inhomogeneous dielectric structures that are mutually coupled with wire antennas. The method employs the surface equivalence theorem in the discrete domain to separate the problem into a dielectric domain simulated using the FDTD method...
-
Parallel Implementation of the Discrete Green's Function Formulation of the FDTD Method on a Multicore Central Processing Unit
PublikacjaParallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method was developed on a multicore central processing unit. DGF-FDTD avoids computations of the electromagnetic field in free-space cells and does not require domain termination by absorbing boundary conditions. Computed DGF-FDTD solutions are compatible with the FDTD grid enabling the perfect hybridization of FDTD...
-
Analytical Expression for the Time-Domain Discrete Green's Function of a Plane Wave Propagating in the 2-D FDTD Grid
PublikacjaIn this letter, a new closed-form expression for the time-domain discrete Green's function (DGF) of a plane wave propagating in the 2-D finite-difference time-domain (FDTD) grid is derived. For the sake of its verification, the time-domain implementation of the analytic field propagator (AFP) technique was developed for the plane wave injection in 2-D total-field/scattered-field (TFSF) FDTD simulations. Such an implementation of...
-
Analysis of radiation and scattering problems with the use of hybrid techniques based on the discrete Green's function formulation of the FDTD method
PublikacjaIn this contribution, simulation scenarios are presented which take advantage of the hybrid techniques based on the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method. DGF-FDTD solutions are compatible with the finite-difference grid and can be applied for perfect hybridization of the FDTD method. The following techniques are considered: (i) DGF-FDTD for antenna simulations, (ii) DGF-based...
-
Application of the discrete Green's function-based antenna simulations for excitation of the total-field/scattered-field interface in the FDTD method
PublikacjaIn this article, the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method is proposed for simulation of wire antennas irradiating inhomogeneous dielectric scatterers. Surface equivalence theorem in the discrete domain is used to separate the problem into an inhomogeneous domain and a wire antenna that are simulated with the use of FDTD and DGF-FDTD, respectively. Then, the excitation of the...
-
Fast implementation of FDTD-compatible green's function on multicore processor
PublikacjaIn this letter, numerically efficient implementation of the finite-difference time domain (FDTD)-compatible Green's function on a multicore processor is presented. Recently, closed-form expression of this discrete Green's function (DGF) was derived, which simplifies its application in the FDTD simulations of radiation and scattering problems. Unfortunately, the new DGF expression involves binomial coefficients, whose computations...
-
Implementation of FDTD-Compatible Green's Function on Graphics Processing Unit
PublikacjaIn this letter, implementation of the finite-difference time domain (FDTD)-compatible Green's function on a graphics processing unit (GPU) is presented. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates its applications in the FDTD simulations of radiation and scattering problems. Unfortunately, implementation of the new DGF formula in software requires a multiple precision...
-
Analytical Expression for the Time-Domain Green's Function of a Discrete Plane Wave Propagating in the 3-D FDTD Grid
PublikacjaIn this paper, a closed-form expression for the time-domain dyadic Green’s function of a discrete plane wave (DPW) propagating in a 3-D finite-difference time-domain (FDTD) grid is derived. In order to verify our findings, the time-domain implementation of the DPW-injection technique is developed with the use of the derived expression for 3-D total-field/scattered-field (TFSF) FDTD simulations. This implementation requires computations...
-
Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system
PublikacjaThis paper presents an implementation of the FDTD-compatible Green's function on a heterogeneous parallel processing system. The developed implementation simultaneously utilizes computational power of the central processing unit (CPU) and the graphics processing unit (GPU) to the computational tasks best suited to each architecture. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates...
-
A New Expression for the 3-D Dyadic FDTD-Compatible Green's Function Based on Multidimensional Z-Transform
PublikacjaIn this letter, a new analytic expression for the time-domain discrete Green's function (DGF) is derived for the 3-D finite-difference time-domain (FDTD) grid. The derivation employs the multidimensional Z-transform and the impulse response of the discretized scalar wave equation (i.e., scalar DGF). The derived DGF expression involves elementary functions only and requires the implementation of a single function in the multiple-precision...
-
Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes
PublikacjaIn this paper, we investigate an acceleration of the discrete Green's function (DGF) formulation of the FDTD method (DGF-FDTD) with the use of recurrence schemes. The DGF-FDTD method allows one to compute FDTD solutions as a convolution of the excitation with the DGF kernel. Hence, it does not require to execute a leapfrog time-stepping scheme in a whole computational domain for this purpose. Until recently, the DGF generation...
-
Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
PublikacjaWe consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function we derive a closed-form expression for the electric quadrupole moment induced...
-
Elastic wave propagation signals in concrete cube (experimental and calculated using discrete element method)
Dane BadawczeThe DataSet contains the results of the elastic wave propagation. Both experimental and numerical signals were obtained for the concrete cube with dimensions of 50 × 50 × 50 mm3. The specimen was made of concrete with called mortar concrete. The ingredients of the concrete mix were as follows: CEM I 42.5R (500 kg/m3), sand 0 – 2 (1500 kg/m3) and water...
-
Kazimierz Darowicki prof. dr hab. inż.
OsobyStudia wyższe ukończyłem w czerwcu 1981 roku po zdaniu egzaminu dyplomowego i obronie pracy magisterskiej. Opiekunem pracy magisterskiej był dr hab. inż. Tadeusz Szauer. W roku 1991, 27 listopada uzyskałem stopień naukowy broniąc pracę doktorską zatytułowaną „Symulacyjna i korelacyjna analiza widm immitancyjnych inhibitowanej reakcji elektrodowej”. Promotorem pracy był prof. dr hab. inż. Józef Kubicki (Wydział Chemiczny...
-
Electromagnetic Problems Requiring High-Precision Computations
PublikacjaAn overview of the applications of multiple-precision arithmetic in CEM was presented in this paper for the first time. Although double-precision floating-point arithmetic is sufficient for most scientific computations, there is an expanding body of electromagnetic problems requiring multiple-precision arithmetic. Software libraries facilitating these computations were described, and investigations requiring multiple-precision...
-
Acceleration of the DGF-FDTD method on GPU using the CUDA technology
PublikacjaWe present a parallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method on a graphics processing unit (GPU). The compute unified device architecture (CUDA) parallel computing platform is applied in the developed implementation. For the sake of example, arrays of Yagi-Uda antennas were simulated with the use of DGF-FDTD on GPU. The efficiency of parallel computations...
-
Morse decompositions for a two-dimensional discrete neuron model (limited range)
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Morse decompositions for a two-dimensional discrete neuron model (full range)
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Morse decompositions for a two-dimensional discrete neuron model (low resolution)
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Parallel implementation of the DGF-FDTD method on GPU Using the CUDA technology
PublikacjaThe discrete Green's function (DGF) formulation of the finite-difference time-domain method (FDTD) is accelerated on a graphics processing unit (GPU) by means of the Compute Unified Device Architecture (CUDA) technology. In the developed implementation of the DGF-FDTD method, a new analytic expression for dyadic DGF derived based on scalar DGF is employed in computations. The DGF-FDTD method on GPU returns solutions that are compatible...
-
Closed forms of the Green's function and the generalized Green's function for the Helmholtz operator on the N-dimensional unit sphere
PublikacjaPokazano, że funkcję Greena dla operatora Helmholtza na N-wymiarowej sferze jednostkowej można wyrazić przez funcję Gegenbauera pierwszego rodzaju. W tych przypadkach, w których funkcja Greena nie istnieje, skonstruowano uogólnioną funkcję Greena.
-
Green's function for the wavized Maxwell fish-eye problem
PublikacjaRozpatrzono niezależne od czasu skalarne równanie falowe dla ośrodka typu ''rybie oko'' Maxwella w przestrzeni R^N (N >=2). Pokazano, że równanie to posiada unikalne własności transformacyjne względem inwersji w pewnej klasie hipersfer. Wykorzystano ten fakt do znalezienia zamkniętej postaci funkcji Greena, oraz uogólnionej funkcji Greena, dla wyjściowego równania.
-
DISCRETE MATHEMATICS
Czasopisma -
DISCRETE APPLIED MATHEMATICS
Czasopisma -
An Efficient PEEC-Based Method for Full-Wave Analysis of Microstrip Structures
PublikacjaThis article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the...
-
Elements of Discrete Mathematics 2023
Kursy OnlineThis course helps with learning Elements of Discrete Mathematics.
-
Elements of Discrete Mathematics 2022
Kursy OnlineThis course helps with learning Elements of Discrete Mathematics.
-
Elements of Discrete Mathematics 2024
Kursy OnlineThis course helps with learning Elements of Discrete Mathematics.
-
Firing map of an almost periodic input function
PublikacjaIn mathematical biology and the theory of electric networks the firing map of an integrate-and-fire system is a notion of importance. In order to prove useful properties of this map authors of previous papers assumed that the stimulus function f of the system ẋ = f(t,x) is continuous and usually periodic in the time variable. In this work we show that the required properties of the firing map for the simplified model ẋ = f(t) still...
-
Food & Function
Czasopisma -
The modelling method of discrete-continuous systems
PublikacjaThe paper introduces a method of discrete-continuous systems modelling. In the proposed method a three-dimensional system is divided into finite elements in only two directions, with the third direction remaining continuous. The thus obtained discrete-continuous model is described by a set of partial differential equations. General difference equations of discrete system are obtained using the rigid finite element method. The limit...
-
Function
Czasopisma -
Morse decompositions for a population model with harvesting. Case Ha-Se: Harvesting adults only, equal survival rates of juveniles and adults
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Morse decompositions for a population model with harvesting. Case He-Se: Equal harvesting and equal survival rates of juveniles and adults
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Morse decompositions for a population model with harvesting. Case Hj-Se: Harvesting juveniles only, equal survival rates of juveniles and adults
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Morse decompositions for a population model with harvesting. Case He-S1: Equal harvesting of juveniles and adults, survival rates of juveniles and adults add up to 1
Dane BadawczeThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.