Filtry
wszystkich: 1910
-
Katalog
- Publikacje 1510 wyników po odfiltrowaniu
- Czasopisma 66 wyników po odfiltrowaniu
- Konferencje 64 wyników po odfiltrowaniu
- Osoby 68 wyników po odfiltrowaniu
- Projekty 3 wyników po odfiltrowaniu
- Kursy Online 34 wyników po odfiltrowaniu
- Wydarzenia 1 wyników po odfiltrowaniu
- Dane Badawcze 164 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: RBF NEURAL NETWORKS
-
Sylwester Kaczmarek dr hab. inż.
OsobySylwester Kaczmarek ukończył studia w 1972 roku jako mgr inż. Elektroniki, a doktorat i habilitację uzyskał z technik komutacyjnych i inżynierii ruchu telekomunikacyjnego w 1981 i 1994 roku na Politechnice Gdańskiej. Jego zainteresowania badawcze ukierunkowane są na: sieci IP QoS, sieci GMPLS, sieci SDN, komutację, ruting QoS, inżynierię ruchu telekomunikacyjnego, usługi multimedialne i jakość usług. Aktualnie jego badania skupiają...
-
Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
PublikacjaMost of industrial processes are nonlinear, not stationary, and dynamical with at least few different time scales in their internal dynamics and hardly measured states. A biological wastewater treatment plant falls into this category. The paper considers modelling such processes for monitorning and control purposes by using State - Space Wavelet Neural Networks (SSWN). The modelling method is illustrated based on bioreactors of...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Prognozowanie wpływu drgań komunikacyjnych na budynki mieszkalne za pomocą sztucznych sieci neuronowych i maszyn wektorów wspierających
PublikacjaDrgania komunikacyjne mogą stanowić duże obciążenie eksploatacyjne budynku, powodując zarysowania i spękania tynków, odpadanie wypraw, zarysowania konstrukcji, pękanie elementów konstrukcji lub nawet zawalenie się budynku. Pomiary drgań na rzeczywistych konstrukcjach są pracochłonne i kosztowne, a co ważne nie w każdym przypadku są one uzasadnione. Celem pracy jest analiza autorskiego algorytmu, dzięki któremu z dużym prawdopodobieństwem...
-
Computer Networks-laboratories - 2023
Kursy OnlineAcquiring the skills to design, build and configure computer networks. Demonstration of skills to identify and analyze selected protocols and mechanisms of LAN and WAN networks.
-
Computer Networks Laboratories 2025
Kursy OnlineAcquiring the skills to design, build and configure computer networks. Demonstration of skills to identify and analyze selected protocols and mechanisms of LAN and WAN networks.
-
Computer Networks laboratories 2024
Kursy OnlineAcquiring the skills to design, build and configure computer networks. Demonstration of skills to identify and analyze selected protocols and mechanisms of LAN and WAN networks.
-
Piotr Rajchowski dr inż.
OsobyPiotr Rajchowski (Member, IEEE) was born in Poland, in 1989. He received the E.Eng., M.Sc., and Ph.D. degrees in radio communication from the Gdańsk University of Technology (Gdańsk Tech), Poland, in 2012, 2013, and 2017, respectively. Since 2013, he has been working at the Department of Radiocommunication Systems and Networks, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, as a IT...
-
Sathwik Prathapagiri
OsobySathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Computer Networks EN 2022
Kursy OnlineThe student becomes familiar with the network layered logical architectures, classifies the basic problems of network communication and identifies and analyzes selected protocols and mechanisms of LAN and WAN (IP) networks.
-
Computer Networks EN 2023
Kursy OnlineThe student becomes familiar with the network layered logical architectures, classifies the basic problems of network communication and identifies and analyzes selected protocols and mechanisms of LAN and WAN (IP) networks.
-
Towards neural knowledge DNA
PublikacjaIn this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...
-
Adrian Bekasiewicz prof. dr hab. inż.
OsobyAdrian Bekasiewicz received the MSc, PhD, and DSc degrees in electronic engineering from Gdansk University of Technology, Poland, in 2011, 2016, and 2020, respectively. In 2014, he joined Engineering Optimization & Modeling Center at Reykjavik University, Iceland, where he held a Research Associate and a Postdoctoral Fellow positions, respectively. Currently, he is an Associate Professor and the head of Teleinformation Networks...
-
Opracowanie metodologii rozpoznawania i klasyfikowania emocji w filmach przy użyciu sztucznych sieci neuronowych
PublikacjaCelem rozprawy doktorskiej jest opracowanie metodologii pozwalającej na rozpoznawanie i klasyfikację emocji w filmie za pomocą sztucznych sieci neuronowych. W pracy przedstawiono tematykę związaną z kolorowaniem sceny filmowej w kontekście oddziaływania koloru na emocje widza. W celu analizy wpływu filmow na emocje widza dokonano wyboru tytułow filmowych, następnie przeprowadzono szereg wstępnych testow subiektywnych pozwalających...
-
An Approach to RBF Initialization with Feature Selection
Publikacja -
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublikacjaPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Neural Network Subgraphs Correlation with Trained Model Accuracy
PublikacjaNeural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...
-
Measures of region failure survivability for wireless mesh networks
PublikacjaWireless mesh networks (WMNs) are considered as a promising alternative to wired local, or metropolitan area networks. However, owing to their exposure to various disruptive events, including natural disasters, or human threats, many WMN network elements located close to the failure epicentre are frequently in danger of a simultaneous failure, referred to as a region failure. Therefore, network survivability, being the ability...
-
Min-max optimization of node‐targeted attacks in service networks
PublikacjaThis article considers resilience of service networks that are composed of service and control nodes to node-targeted attacks. Two complementary problems of selecting attacked nodes and placing control nodes reflect the interaction between the network operator and the network attacker. This interaction can be analyzed within the framework of game theory. Considering the limited performance of the previously introduced iterative...
-
Resource constrained neural network training
PublikacjaModern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...
-
Neural network training with limited precision and asymmetric exponent
PublikacjaAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Survey on fuzzy logic methods in control systems of electromechanical plants
PublikacjaРассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublikacjaThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
PublikacjaRecently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...
-
OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.
PublikacjaIn the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...
-
Deep neural network architecture search using network morphism
PublikacjaThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
Exploiting multi-interface networks: Connectivity and Cheapest Paths
PublikacjaLet G = (V,E) be a graph which models a set of wireless devices (nodes V) that can communicate by means of multiple radio interfaces, according to proximity and common interfaces (edges E). The problem of switching on (activating) the minimum cost set of interfaces at the nodes in order to guarantee the coverage of G was recently studied. A connection is covered (activated) when the endpoints of the corresponding edge share at...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublikacjaThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Neural Architecture Search for Skin Lesion Classification
PublikacjaDeep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...
-
Agent-Based Population Learning Algorithm for RBF Network Tuning
Publikacja -
Agent-Based Approach to RBF Network Training with Floating Centroids
Publikacja -
An Experimental Study of Scenarios for the Agent-Based RBF Network Design
Publikacja -
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublikacjaArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key
PublikacjaThe topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...
-
Modeling the Networks - ed. 2021/2022
Kursy OnlineThe goal of this course is to present optimization problems for road networks, where the road network is a set of n distinct lines, or n distinct (open or closed) line segments, in the plane, such that their union is a connected region.
-
Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)
PublikacjaThe paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...
-
TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK
PublikacjaThe need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...
-
Limitation of Floating-Point Precision for Resource Constrained Neural Network Training
PublikacjaInsufficient availability of computational power and runtime memory is a major concern when it comes to experiments in the field of artificial intelligence. One of the promising solutions for this problem is an optimization of internal neural network’s calculations and its parameters’ representation. This work focuses on the mentioned issue by the application of neural network training with limited precision. Based on this research,...
-
Neural Modelling of Steam Turbine Control Stage
PublikacjaThe paper describes possibility of steam turbine control stage neural model creation. It is of great importance because wider application of green energy causes severe conditions for control of energy generation systems operation Results of chosen steam turbine of 200 MW power measurements are applied as an example showing way of neural model creation. They serve as training and testing data of such neural model. Relatively simple...
-
Agent-Based RBF Network Classifier with Feature Selection in a Kernel Space
Publikacja -
Emotion Recognition from Physiological Channels Using Graph Neural Network
PublikacjaIn recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...
-
Neural Development
Czasopisma -
Neural Computation
Czasopisma -
Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice
PublikacjaThe vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron,...
-
Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.
PublikacjaIn the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
A compact smart sensor based on a neural classifier for objects modeled by Beaunier's model
PublikacjaA new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the...
-
An Analysis of Neural Word Representations for Wikipedia Articles Classification
PublikacjaOne of the current popular methods of generating word representations is an approach based on the analysis of large document collections with neural networks. It creates so-called word-embeddings that attempt to learn relationships between words and encode this information in the form of a low-dimensional vector. The goal of this paper is to examine the differences between the most popular embedding models and the typical bag-of-words...
-
Adding Interpretability to Neural Knowledge DNA
PublikacjaThis paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...
-
Resilient Routing in Communication Networks
PublikacjaThis important text/reference addresses the latest issues in end-to-end resilient routing in communication networks. The work highlights the main causes of failures of network nodes and links, and presents an overview of resilient routing mechanisms, covering issues related to the Future Internet (FI), wireless mesh networks (WMNs), and vehicular ad-hoc networks (VANETs). For each of these network architectures, a selection of...