Wyniki wyszukiwania dla: photocatalytic degradation
-
Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity
PublikacjaDifferent TiO2 photocatalysts, i.e., commercial samples (ST‐01 and P25 with minority of rutile phase), nanotubes, well‐crystallized faceted particles of decahedral shape and mesoporous spheres, were used as supports for deposition of Pt nanoparticles (NPs). Size‐controlled Pt NPs embedded in TiO2 were successfully prepared by microemulsion and wet‐impregnation methods. Obtained photocatalysts were characterized using XRD, TEM,...
-
Methane formation over TiO2–based photocatalysts: reaction pathways
PublikacjaThe effects of organic impurities adsorbed or incorporated into semiconductors structure on the photocatalytic products are noteworthy. For this purpose, the as-prepared Ag, Au and Pdmodified TiO2 samples were exposed to UV-vis irradiation in various gas atmospheres (CO2, N2, 600 ppm CO2 in N2, and 13CO2) in order to clarify the route of CH4 formation in the process of photocatalytic CO2 reduction. In the presented research it...
-
How thermal stability of ionic liquids leads to more efficient TiO2-based nanophotocatalysts: Theoretical and experimental studies
PublikacjaIonic liquids (ILs) containing distinct nitrogen-bearing organic cations (pyridinium, pyrrolidinium, imidazolium, ammonium, morpholinium) were first used for the preparation of 23 IL-TiO2 types of composites by ionic liquid assisted solvothermal synthesis. These 23 optimal ILs structures (i.e. compounds exhibiting an optimal combination of specific properties, functionality, and safety) for synthesis and experimental validation...
-
Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures
PublikacjaThe synthesis of novel tunable carbon-based nanostructure represented a pivotal point to enhance the efficiency of existing photocatalysts and to extend their applicability to a wider number of sustainable processes. In this letter, we describe a transparent photocatalytic heterostructure by growing boron-doped carbon nanowalls (B-CNWs) on quartz, followed by a simple TiO2 sol-gel deposition. The effect on the thickness and boron-doping...
-
Influence of alkali metal cations on the photoactivity of crystalline and exfoliated amorphous WO3 – photointercalation phenomenon
PublikacjaIn order to investigate the effect of photointercalation on photoelectrochemical properties, two types of WO3-based photoanodes, bulk and exfoliated have been prepared and investigated. An aqueous exfoliation method is introduced for the simple fabrication of amorphous and hydrated WO3 nanomaterial using commercial bulk WO3 precursor. The comparison of obtained material with bulk WO3 was performed using Raman, UV–vis, and XPS as...
-
The influence of photointercalaction and photochromism effects on the photocatalytic properties of electrochemically obtained maze-like MoO3 microstructures
PublikacjaMolybdenum oxide (α-MoO3) thin films with oriented crystalline facets were synthesised by anodization of Mo foils. The obtained samples were exposed to UV–Vis illumination in aqueous electrolytes providing different cations. The morphology and structure of modified samples were investigated. The effect of photointercalated alkali metal cations (Li+, Na+, K+) on optical and structural properties was studied using UV–vis and Raman...
-
Lanthanide-organic-frameworks modified ZnIn2S4 for boosting hydrogen generation under UV–Vis and visible light
PublikacjaNovel Ln-MOF with microrods shape were successfully combined with ZnIn2S4 (ZIS) microsphere and used for photocatalytic hydrogen generation under UV–Vis and visible light. The Ln-MOFs/ZIS system comprises lanthanide-carboxylate coordination networks (Tm and Gd as metal ions, and 1,3,5-benzenetricarboxylic acid (BTC) as the organic linker) deposited on ZnIn2S4 microspheres. Effect of the amount of ((Tm,Gd)-BTC) (1, 5, 10 wt%) on...
-
Efficient method for octahedral NH2-MIL-125 (Ti) synthesis: Fast and mild conditions
PublikacjaA new hot injection method for preparing octahedral NH2-MIL-125 (Ti) was developed. This method is six times faster and conducted under milder conditions, i.e., at 120°C in a flask, and exhibits higher crystal formation efficiency than the commonly used solvothermal method while maintaining comparable structural, optical, and photocatalytic properties.
-
Photocatalytic selectivity oxidation of 2-phenoxy-1-phenylethanol coupled with Cd-MOF/S/Ni-NiO for hydrogen evolution performance and mechanism
PublikacjaIn this study, Cd-MOF/S/Ni–NiO (MOF = metal–organic framework) composite materials were prepared using a hydrothermal synthesis method and employed for the high-efficiency photocatalytic oxidation of the lignin β-O-4 model compound 2-phenoxy-1-phenylethanol, coupled with water splitting hydrogen evolution. The Cd-MOF/S/Ni–NiO composite material retained the petal-like morphology of Cd-MOF, with Ni-BTC acting as the precursor for...
-
Evaluation of cathode materials for electrochemical photocatalyst deposition
PublikacjaElectrochemical deposition of photocatalyst, especially TiO2, onto several cathode materials was investigated and evaluated. The deposited films were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDX) and electrochemical measurements. Photocatalytic activity was determined by the decomposition of cyclohexane in air by irradiation with ultraviolet light emitting diodes. It was found that...
-
Controlled engineering of Bi4O5Br2 and BiOBr via interactions imidazolium ionic liquids and medium during synthesis as a simple method for enhancement of photocatalytic activity
PublikacjaIonic liquid-mediated synthesis of Bi4O5Br2 and BiOBr was carried out in non-polar solvents (glycerol, ethylene glycol) and a polar solvent (0.1 M mannitol). The effect of elongation of alkyl side chains (C4mim+, C8mim+, and C16mim+) of imidazolium ionic liquids, which act as a source of bromide and template, on the morphological, optical, and photocatalytic properties of materials was investigated. The crystallite size, morphology,...
-
Charge separation control in organic photosensitizers for photocatalytic water splitting without sacrificial electron donors
PublikacjaPhotocatalytic hydrogen evolution reaction (photoHER) is one of the most promising approaches towards production of “green” hydrogen. Currently, the state-of-the-art photoHER systems require the use of sacrificial electron donors (SED), because of inefficient charge separation in photosensitizers and thermodynamically challenging water oxidation by the same catalyst. Here, we present a molecular design approach for all-organic...
-
Photoelectrochemically Active N‐Adsorbing Ultrathin TiO2 Layers for Water‐Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment
PublikacjaHighly performing photocatalytic surfaces are nowadays highly desirable in energy fields, mainly due to their applicability as photo water‐splitting electrodes. One of the current challenges in this field is the production of highly controllable and efficient photoactive surfaces on many substrates. Atomic layer deposition has allowed the deposition of photoactive TiO2 layers over wide range of materials and surfaces. However,...
-
NOBLE METAL MODIFIED TiO2 FOR PHOTOCATALYTIC AIR PURIFICATION
PublikacjaTiO2 was surface modified with silver, gold, palladium and platinum ion clusters to improve its photocatalytic activity. The effect of metal content, the kind of dopant used during preparation procedure on the photoactivity were investigated. in toluene removal which was used as a model volatile organic compound. Toluene, at the concentration of about 100 ppm, was irradiated over noble metal modified TiO2 using light-emitting diodes...
-
Magnetic photocatalysts for water treatment
PublikacjaThe concept of magnetic photocatalysts with separation function requires ferromagnetic material with high magnetic susceptibility to an external magnetic field to enable recycling of composite nanoparticles. Currently, much attention is devoted to functionalization of photocatalyst using MFe2O3, where M =Fe, Zn, Co, Mn. However direct contact between photocatalyst and magnetic iron oxide particles leads to photodissolution of iron...
-
Morphology Regulation Mechanism and Enhancement of Photocatalytic Performance of BiOX (X = Cl, Br, I) via Mannitol-Assisted Synthesis
PublikacjaBiOX (X = Cl, Br, I) photocatalysts with dominant (110) facets were synthesized via a mannitol-assisted solvothermal method. This is the first report on the exposed (110) facets-, size-, and defects-controlled synthesis of BiOX achieved by solvothermal synthesis with mannitol. This polyol alcohol acted simultaneously as a solvent, capping agent, and/or soft template. The mannitol concentration on the new photocatalysts morphology...
-
Ordered TiO2 nanotubes with improved photoactivity through self-organizing anodization with the addition of an ionic liquid: effects of the preparation conditions
PublikacjaModifying the geometric and surface parameters of oriented TiO2 nanotubes (NTs) is beneficial to the utilization of solar energy for chemical reactions, and this performance may be further improved. Thus, the effects of adding an ionic liquid (IL), 1-butylpiridinium chloride [BPy][Cl], and the effects of the water content and preparation conditions on the surface morphological, physicochemical, photocatalytic and photoelectrochemical...
-
Various types of semiconductor photocatalysts modified by CdTe QDs and Pt NPs for toluene photooxidation in the gas phase under visible light
PublikacjaA novel synthesis process was used to prepare TiO2 microspheres, TiO2 P-25, SrTiO3 and KTaO3 decorated by CdTe QDs and/or Pt NPs. The effect of semiconductor matrix, presence of CdTe QDs and/or Pt NPs on the semiconductor surface as well as deposition technique of Pt NPs (photodeposition or radiolysis) on the photocatalytic activity were investigated. The as-prepared samples were characterized by X-ray powder diffractometry (XRD),...
-
The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts
PublikacjaNovel CdTe-KTaO3composite photocatalysts were successfully synthesized by using thioglycolic acid(TGA) or 3-mercaptopropionic acid (MPA) as linker molecules which facilitated attachment of CdTequantum dots to the surface of KTaO3nanocubes. The as-prepared photocatalysts were characterizedby UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy...
-
From Janus nanoparticles to multi-headed structure - photocatalytic H2 evolution
PublikacjaThe generation of stable, high-performance photocatalysts with appropriate charge distribution for solar energy conversion is currently one of the urgent missions of photocatalytic science. Recent studies have shown that the Janus NPs with characteristic varied, asymmetric structure may boost overall efficiency of photocatalys. However, there is still a lack of systematic studies in which Janus-type particles are used in the hydrogen...
-
Remarkable visible-light induced hydrogen generation with ZnIn2S4 microspheres/CuInS2 quantum dots photocatalytic system
PublikacjaA new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited...
-
Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core–shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solutions
PublikacjaBy combining different semiconductors, scientists have developed innovative materials capable of converting solar energy into useful forms of energy or driving chemical reactions that clean up pollutants. These materials offer a promising path to combat global environmental and energy challenges. In this study, HAp@Bi2S3 core–shell structures were synthesized using a facile microemulsion technique, and then loaded onto graphitic...
-
Optimized photodegradation of palm oil agroindustry waste effluent using multivalent manganese–modified black titanium dioxide
PublikacjaThis article presents a methodological approach to use manganese (Mn3+Mn7+)-modified black titanium dioxide (Mn/BTiO2) as a photocatalyst to optimize and improve visible-light-driven photodegradation of treated agro-industrial effluent (TPOME). A modified wet chemical process was used to prepare BTiO2. The BTiO2 was then wet impregnated with Mn and calcined at 300 °C for 1 h to produce Mn/BTiO2. The activity of Mn/BTiO2 was investigated...
-
Properties of an innovative multi-functional finish for the improvement of indoor air quality
PublikacjaDue to lifestyle changes, people spend most of their time indoors at present; thus, Indoor Air Quality (IAQ) is a matter of utmost importance. Multi-functional and innovative finishes can help to passively improve the IAQ, benefitting the health and comfort of occupants. For this study, reference and pre-mixed commercial mortars are compared to a new multi-functional hydraulic lime mortar for indoor finishes, in which conventional...
-
Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays
PublikacjaDoping of TiO2 nanotube arrays with boron was realized via electrochemical treatment of as-anodized titania immersed in electrolyte containing boric acid. The photoactivity of doped and pure titania was examined by means of photoelectrochemical and photocatalytic response under UV-vis irradiation. The results showed that photocurrent density of B-TNTs is remarkably higher (7.5 times) than density of pure TiO2 nanotube arrays. Furthermore,...
-
Decahedral-shaped anatase titania photocatalyst particles: Synthesis in a newly developed coaxial-flow gas-phase reactor
PublikacjaDecahedral-shaped anatase particles (DAPs) were prepared by a gas-phase process consisting of titanium(IV) chloride oxidation. The use of a coaxial-flow gas-phase reactor resulted in high reaction yield (ca. 70%) and good reproducibility of DAPs production. The influence of controlled and resultant preparation parameters on the process course and on DAPs properties (such as specific surface area, particle size and particle morphology)...
-
Facile formation of self-organized TiO2 nanotubes in electrolyte containing ionic liquid - ethylammonium nitrate and their remarkable photocatalytic properties
PublikacjaThe oriented TiO2 nanotube arrays (NTs) are identified as a stable, active and recyclable photocatalytic surface. However, their photoactivity is strictly depended on morphology (especially length), which could be controlled by anodic oxidation parameters, including electrolyte properties. To control the morphology, were successfully synthesized a series of NTs by a novel approach where ionic liquid (IL), ethylammonium nitrate...
-
Novel room-temperature synthesis of pioneering CsPbX3@(Ce)UiO-66-Y hybrid nanomaterials for boosted photocatalytic hydrogen evolution
PublikacjaPerovskites are attractive structures for photocatalytic hydrogen generation, but also are limited by low stability, which can be improved by combination with other materials. Perovskite structures have potential for photocatalytic hydrogen generation; however, their practical application is hindered by inherent low stability. This limitation can be effectively mitigated through strategic combinations with complementary materials....
-
Bi-based halide perovskites: Stability and opportunities in the photocatalytic approach for hydrogen evolution
PublikacjaIn this study, we successfully prepared Bi-based single perovskites of the A3Bi2I9 type (A = Cs, Rb, MA, FA), and, for the first time, attempted to experimentally obtain double perovskites Cs2B’BiI6 type (B′ = Ag, Au, In, Cu). Despite the premises available in theoretical studies, our research has proven the impossibility of the existence of double perovskites of this type. Nevertheless, both types of obtained materials were subjected...
-
Energy requirements for methods improving gas detection by modulating physical properties of resistive gas sensors
PublikacjaAbstract. One of the most important disadvantage of resistive gas sensors is their limited gas selectivity. Therefore, various methods modulating their physical properties are used to improve gas detection. These methods are usually limited to temperature modulation or UV light irradiation for the layers exhibiting photocatalytic effect. These methods cause increased energy consumption. In our study we consider how much energy...
-
FeS-based nanocomposites: A promising approach for sustainable environmental remediation – Focus on adsorption and photocatalysis – A review
PublikacjaPopulation expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental...
-
Tailoring Physicochemical Properties of V2O5 Nanostructures: Influence of Solvent Type in Sol-Gel Synthesis
PublikacjaThe influence of different solvents, including aqueous and nonaqueous types, on the physicochemical properties of V2O5 nanostructures was thoroughly investigated. Various characterization techniques, such as XRD, XPS, FTIR, Raman spectroscopy, UV-vis DRS, SEM, TEM, and BET, were employed to analyze the obtained materials. Additionally, the adsorption properties of the synthesized V2O5 nanostructures for methylene blue were examined,...
-
Enhancement of photocatalytic-based processes by mono- and bimetallic (CuPd) rutile loaded nanoparticles for antibiotic resistance genes and facultative pathogenic bacteria removal
PublikacjaThe aim of the study was the strong reduction of facultative pathogenic bacteria (FPB), and clinically relevant antibiotic resistance genes (ARGs) from secondary effluent. To evaluate the ARGs removal efficiency comparative study of individual unit processes and combined AOPs has been performed. The present work investigated: i) removal of selected ARGs, namely blaTEM, ermB, qnrS, tetM, five FPB as well as 16S rDNA and the integrase...
-
Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance
PublikacjaThe formation of heterojunctions between wide- and narrow-bandgap photocatalysts is commonly employed to boost the efficiency of photocatalytic hydrogen generation. Herein, the photoactivity of urchin-like rutile particles is increased by decorating with pristine as well as Er- or Yb-doped Bi2S3 quantum dots (QDs) at varied QD loadings (1–20 wt%) and doping degrees (1–15 mol%), and the best hydrogen evolution performance is achieved at...
-
Photocatalysts for Solar Energy Conversion
PublikacjaPhotocatalytic oxidation over suspended solid photocatalysts (e.g., titanium dioxide) has been proposed as a sustainable process for treatment and purification of water and wastewater as well as the process for photoconversion of solar energy to hydrogen, methane, and other low hydrocarbons. Solar radiation could be used to drive heterogeneous electrochemical reactions at the surface of an optically active photocatalyst (e.g.,...
-
Diiodo-BODIPY Sensitizing of the [Mo3S13]2– Cluster for Noble-Metal-Free Visible-Light-Driven Hydrogen Evolution within a Polyampholytic Matrix
PublikacjaWe report on a photocatalytic setup that utilizes the organic photosensitizer (PS) diiodo-BODIPY and the non-precious-metal-based hydrogen evolution reaction (HER) catalyst (NH4)2[Mo3S13] together with a polyampholytic unimolecular matrix poly(dehydroalanine)-graft-poly(ethyleneglycol) (PDha-g-PEG) in aqueous media. The system shows exceptionally high performance with turnover numbers (TON > 7300) and turnover frequencies (TOF...
-
PREPARATION AND CHARACTERIZATION OF CoFe2O4/TiO2-PANI HYBRID NANOCOMPOSITE WITH MAGNETIC AND PHOYOCATALYTIC ACTIVITY
PublikacjaHybrid nanocomposites consisting of inorganic component and organic conducting polymer are promising materials, which can be applied in heterogeneous photocatalysis. Titanium(IV) oxide is widely used photocatalysts due to its non-toxicity, low cost and chemical stability. The main disadvantage of TiO2 is low photocatalytic activity under visible light. Conducting polymers, also known as conjugated polymers are polymer materials...
-
Carbon Nanomaterials From Metal-Organic Frameworks: A New Material Horizon for CO2 Reduction
PublikacjaThe rise of CO2 in the atmosphere, which results in severe climate change and temperature increase, is known as the major reason for greenhouse effect. Reducing CO2 to value-added products is an attractive solution to this severe problem, along with addressing the energy crisis, to which the catalysts being employed are of vital importance. Due to their high porosity and tunable compositions, Metal-Organic Frameworks (MOFs) show...
-
Transparent thin films of Cu-TiO2 with visible light photocatalytic acitivity
PublikacjaThin films of Cu–TiO2 with a high level of transparency were prepared by a dip-coating procedure on the glass surface. CuCl2 was used as a copper precursor added during sol – gel synthesis of TiO2. The extension of optical absorption into the visible region of as-prepared thin films was indicated by UV/Vis spectroscopy. Only the anatase phase was detected by X-ray di ffraction analysis (XRD). The presence of copper in the structure...
-
Unraveling a novel microwave strategy to fabricate exposed {001}/{101} facets anatase nanocrystals: Potential for use to the elimination of environmentally toxic metronidazole waste
PublikacjaThis study present a novel microwave strategy to fabricate highly active anatase particles, exposing {101} and {001} facets. Microwave treatment time was shown to determine the growth of crystals in a certain direction. To the best of our knowledge, it is the first report revealing that the contact time of TiO2 crystals with fluorine ions during the microwave process affects the formed morphology, in particular exposed facets ratio....
-
Electrocatalytic oxidation of methanol, ethylene glycol and glycerine in alkaline media on TiO2 nanotubes decorated with AuCu nanoparticles for an application in fuel cells
PublikacjaIn this work, we present the catalytic and photocatalytic activity of AuCu nanostructures obtained on TiO2 nanotubes toward methanol, ethylene glycol and glycerine oxidation. The electrode material is prepared by anodization of Ti foil, thin AuCu layer sputtering and rapid thermal treatment under argon atmosphere. Scanning electron microscopy images confirmed the presence of ordered tubular architecture of TiO2 as well as nanoparticles...
-
Ordered TiO2 nanotubes: the effect of preparation parameters on the photocatalytic activity in air purification process
PublikacjaVertically ordered TiO2 nanotube arrays were synthesized by anodic oxidation of titanium foil in glycerol, ethylene glycol and water-based electrolytes. The effect of electrolyte composition, anodization voltage, ultrasonic treatment and calcination time on the morphology of the resulting thin films, as well as on their photocatalytic activity in toluene removal, used as a model volatile organic compound, was investigated. Toluene,...
-
Morphology, surface properties and photocatalytic activity of the bismuth oxyhalides semiconductors prepared by ionic liquid assisted solvothermal method
PublikacjaThis is the first report of the effect of the ILs cation type (imidazolium, pyridinium and pyrrolidinium) on the morphology, surface properties and photoactivity of BiOX semiconductors type obtained by solvothermal method in glycerol. The various ionic liquids (IL) cation type as a halogen source and templating agent for the synthesis of the bismuth oxyhalides nanoparticles has been systematically investigated. The role of ILs...
-
Theoretical and Experimental Studies on the Visible Light Activity of TiO2 Modified with Halide-Based Ionic Liquids
PublikacjaFormation of a surface complex between organic molecules and TiO2 is one of the possible strategies for the development of visible light-induced TiO2 photoactivity. Herein, three ionic liquids (ILs) with the same cation and dierent anions (1-butylpirydynium chloride/bromide/iodide) have been applied for the surface modification of TiO2 and to understand the role of anions in visible light-induced activity of ILs-TiO2 systems. Photocatalytic...
-
Towards Computer-Aided Graphene Covered TiO2-Cu/(CuxOy) Composite Design for the Purpose of Photoinduced Hydrogen Evolution
PublikacjaIn search a hydrogen source, we synthesized TiO2-Cu-graphene composite photocatalyst for hydrogen evolution. The catalyst is a new and unique material as it consists of copper-decorated TiO2 particles covered tightly in graphene and obtained in a fluidized bed reactor. Both, reduction of copper from Cu(CH3COO) at the surface of TiO2 particles and covering of TiO2-Cu in graphene thin layer by Chemical Vapour Deposition (CVD) were...
-
Advanced operating methods
PublikacjaSelected operating methods of resistive gas sensors were presented. The methods utilize flicker noise (1/f noise), which gives additional information about ambient gas when compared with the recorded changes of DC resistance only. Methods of flicker noise measurements were outlined. Recently developed prototype gas sensors comprising golden nanoparticle functionalized with organic ligands can generate intense flicker noise induced...
-
Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties
PublikacjaGraphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might help to reduce reliance on fossil fuel supplies and facile remediation routes to achieve clean environment...
-
Progress, Challenge, and Perspective of Bimetallic TiO2-Based Photocatalysts
PublikacjaBimetallic TiO2-based photocatalysts have attracted considerable attention in recent years as a class of highly active catalysts and photocatalysts under both UV and Vis light irradiation. Bimetallic noble metal structures deposited on TiO2 possess the ability to absorb visible light, in a wide wavelength range (broad LSPR peak), and therefore reveal the highest level of activity as a result of utilization of a large amount of...
-
CuGaS2@NH2-MIL-125(Ti) nanocomposite: Unveiling a promising catalyst for photocatalytic hydrogen generation
PublikacjaThe development of efficient nanocomposites represents a promising strategy for enhancing the transfer and separation of photogenerated carriers within metal-organic frameworks (MOFs) for photocatalytic H2 generation. In this study, we report, for the first time, the successful fabrication of a novel CuGaS2@NH2-MIL-125(Ti) nanocomposite in a two-step synthesis, consisting of octahedral NH2-MIL-125(Ti) metal-organic frameworks interspersed...
-
Effect of copper and silver modification of NH2-MIL-125(Ti) on the photoreduction of carbon dioxide to formic acid over this framework under visible-light irradiation
PublikacjaCu and Ag enhance the photocatalytic activities of metal–organic frameworks (MOFs) toward CO2 conversion because of their CO2 adsorption capacities and effects on the lowest unoccupied molecular orbital (LUMO) overpotentials of MOFs. However, to date, targeted introduction of metals into MOFs to achieve visible (Vis)- light-active photocatalysts for CO2 photoconversion has not been realized. Herein, a series of aminefunctionalized...