Filtry
wszystkich: 18
Wyniki wyszukiwania dla: BLUR
-
Blur recognition using second fundamental form of image surface
Publikacja -
Endoscopy video analysis algorithms and their independence of rotation , brightness , contrast , color and blur
PublikacjaThe article presents selected image analysis algorithms for endoscopy videos. Mathematical methods that are part of these algorithms are described, and authors’ claims about the characteristics of these algorithms, such as the independence of rotation, brightness, contrast, etc. are mentioned. Using the common test on the real endoscopic image database and a set of image transformations, the validity of these claims was checked...
-
Architecture and water - new concepts of blurring borders
PublikacjaArtykuł ukazuje współczesne relacje pomiędzy architekturą i wodą na tle przełomowej myśli teoretycznej wczesnego modernizmu i koncepcji sztuki XX wieku.
-
Blurred quantum Darwinism across quantum reference frames
PublikacjaQuantum Darwinism describes objectivity of quantum systems via their correlations with their environment--information that hypothetical observers can recover by measuring the environments. However, observations are done with respect to a frame of reference. Here, we take the formalism of [Giacomini, Castro-Ruiz, & Brukner. Nat Commun 10, 494 (2019)], and consider the repercussions on objectivity when changing quantum reference...
-
Ensembling noisy segmentation masks of blurred sperm images
PublikacjaBackground: Sperm tail morphology and motility have been demonstrated to be important factors in determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some publicly available datasets for classifying morphological defects contain images limited only to the sperm head. This...
-
SegSperm - a dataset of sperm images for blurry and small object segmentation
Dane BadawczeMany deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublikacjaThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
Concurrent Video Denoising and Deblurring for Dynamic Scenes
PublikacjaDynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide...
-
A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache
PublikacjaThe paper presents a new approach to parallel image processing using byte addressable, non-volatile memory (NVRAM). We show that our custom built MPI I/O implementation of selected functions that use a distributed cache that incorporates NVRAMs located in cluster nodes can be used for efficient processing of large images. We demonstrate performance benefits of such a solution compared to a traditional implementation without NVRAM...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublikacjaLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Multi-task Video Enhancement for Dental Interventions
PublikacjaA microcamera firmly attached to a dental handpiece allows dentists to continuously monitor the progress of conservative dental procedures. Video enhancement in video-assisted dental interventions alleviates low-light, noise, blur, and camera handshakes that collectively degrade visual comfort. To this end, we introduce a novel deep network for multi-task video enhancement that enables macro-visualization of dental scenes. In particular,...
-
Vident-synth: a synthetic intra-oral video dataset for optical flow estimation
Dane BadawczeWe introduce Vident-synth, a large dataset of synthetic dental videos with corresponding ground truth forward and backward optical flows and occlusion masks. It can be used for:
-
Vident-real: an intra-oral video dataset for multi-task learning
Dane BadawczeWe introduce Vident-real, a large dataset of 100 video sequences of intra-oral scenes from real conservative dental treatments performed at the Medical University of Gdańsk, Poland. The dataset can be used for multi-task learning methods including:
-
Combined No-Reference Image Quality Metrics for Visual Quality Assessment Optimized for Remote Sensing Images
PublikacjaNo-reference image quality assessment is one of the most demanding areas of image analysis for many applications where the results of the analysis should be strongly correlated with the quality of an input image and the corresponding reference image is unavailable. One of the examples might be remote sensing since the transmission of such obtained images often requires the use of lossy compression and they are often distorted,...
-
Polymodal Method of Improving the Quality of Photogrammetric Images and Models
PublikacjaPhotogrammetry using unmanned aerial vehicles has become very popular and is already commonly used. The most frequent photogrammetry products are an orthoimage, digital terrain model and a 3D object model. When executing measurement flights, it may happen that there are unsuitable lighting conditions, and the flight itself is fast and not very stable. As a result, noise and blur appear on the images, and the images themselves can...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Multiple Cues-Based Robust Visual Object Tracking Method
PublikacjaVisual object tracking is still considered a challenging task in computer vision research society. The object of interest undergoes significant appearance changes because of illumination variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter- (KCF) based tracking schemes have shown good performance in recent years. The accuracy and robustness of these trackers can be further enhanced...
-
A method supporting fault-tolerant optical text recognition from video sequences recorded with handheld cameras
PublikacjaIn the paper a method supporting the optical character recognition from video sequences recorded with cameras without good stabilization is proposed. Due to the presence of various distortions, such as motion blur, shadows, lossy compression artifacts, auto-focusing errors, etc., the quality of individual video frames, e.g., recorded by a smartphone camera, differs noticeably, influencing the results of text recognition, causing...