Filters
total: 1828
filtered: 260
Search results for: PLATE HEAT EXCHANGER
-
Analytical and reliability data from the real-time simulator biogas plant
Open Research DataThe dataset represents the results of biogas plant simulation. The described plant is an agricultural biogas system, which can produce electrical energy with power estimated up to 1070 kW and heat energy that can reach 1200 kW simultaneously.
-
Testing an evaporator operation with a bifurcation manifold, condenser temperature 20 and evaporator temperature 95
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a bifurcation manifold, condenser temperature 20 and evaporator temperature 90
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a concave manifold, condenser temperature 30, evaporator temperature 70 and preheater temperature 60
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a bifurcation manifold, condenser temperature 20 and evaporator temperature 85
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a concave manifold, condenser temperature 30, evaporator temperature 70 and preheater temperature 40
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a trapezoidal manifold, condenser temperature 90 and evaporator temperature 90
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a bifurcation manifold, condenser temperature 20 and evaporator temperature 70
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a rectangular manifold, condenser temperature 30 and evaporator temperature 90
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
Testing an evaporator operation with a trapezoidal manifold, condenser temperature 70 and evaporator temperature 60
Open Research DataThe experiment was conducted to test the evaporator operation. The heat exchanger was equipped with minigeometry (set of 50 parallel minichannels or single minigap). The studies were conducted for various mass flow rate of the working fluid and for various temperatures at the inlet of the evaporator. Accurate information about the test rig, the parameters...
-
The topography of as-quenched and heat treated 58(2Bi2O3-V2O5)-42SrB4O7 glasses measured with confocal microscope
Open Research DataThe topography of as-quenched and heat treated 58(2Bi2O3-V2O5)-42SrB4O7 glasses measured with confocal microscope.
-
The morphology of as-quenched and heat treated 58(2Bi2O3-V2O5)-42SrB4O7 glasses measured with AFM
Open Research DataThe morphology of as-quenched and heat treated 58(2Bi2O3-V2O5)-42SrB4O7 glasses was measured with the use of atomic force microscope.
-
The topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with AFM
Open Research DataThe topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with AFM.
-
The topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with confocal microscope
Open Research DataThe topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with confocal microscope.
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at 273 K
Open Research DataThe linear electrcial properties as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at low temperatures
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K was measured by impedance spectroscopy method.
-
The structure of vanadate glass-ceramics containing BaTiO3 measured with X-ray diffraction method
Open Research DataThe structure of vanadate glass-ceramics doped with BaTiO3 was measured by XRD. Samples of the composition of x[BaO,TiO2]–(80 − x)V2O5–20Bi2O3 where x = 5, 10 and 15 in mol% were prepared by a conventional melt quenching technique. The melting was performed in alumina crucibles at the temperature of 1273 K–1373 K. The melts were poured on a preheated...
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties as a function of A.C. voltage of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 813 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured by impedance spectroscopy method.
-
The morphology of vanadate glass-ceramics containing BaTiO3 measured with the use of AFM
Open Research DataThe structure of vanadate glass-ceramics doped with BaTiO3 was measured by AFM technique. Samples of the composition of x[BaO,TiO2]–(80 − x)V2O5–20Bi2O3 where x = 5, 10 and 15 in mol% were prepared by a conventional melt quenching technique. The melting was performed in alumina crucibles at the temperature of 1273 K–1373 K. The melts were poured on...
-
Linear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 3 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 10 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
The topography of Bi2VO5.5 ceramics prepared by melt-quenching technique was measured with confocal microscope
Open Research DataThe topography of Bi2VO5.5 ceramics prepared by melt-quenching technique was measured by confocal microscope.
-
The structure of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides measured with X-ray diffraction method
Open Research DataThe structure of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides was measured by XRD.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataNonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 813 K was measured by impedance spectroscopy method.
-
The morphology of vanadate glass-ceramics containing BaTiO3
Open Research DataThe morphology of vanadate glass-ceramic doped with BaTiO3 was measured. Samples of the composition of x[BaO,TiO2]–(80 − x)V2O5–20Bi2O3 where x = 5, 10 and 15 in mol% were prepared by a conventional melt quenching technique. The melting was performed in alumina crucibles at the temperature of 1273 K–1373 K. The melts were poured on a preheated (573...
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataNonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 613 K was measured by impedance spectroscopy method.
-
The topography of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides measured with SEM method
Open Research DataThe topography of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides was measured by SEM.
-
Nonlinear impedance of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrical properties of Bi2VO5.5 glass-ceramic heat-treated at 913 K was measured by impedance spectroscopy method.
-
Linear impedance of vanadate glass-ceramics containing BaTiO3
Open Research DataThe linear impedance of vanadate glass-ceramics containing BaTiO3 was measured. Samples of the composition of x[BaO,TiO2]–(80 − x)V2O5–20Bi2O3 where x = 5, 10 and 15 in mol% were prepared by a conventional melt quenching technique. The melting was performed in alumina crucibles at the temperature of 1273 K–1373 K. The melts were poured on a preheated...
-
Thermal properties of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides measured with DSC method
Open Research DataThermal properties of strontium–borate glasses and glass-ceramics containing bismuth and vanadium oxides was measured by DSC.
-
The structure of vanadate glass-ceramics containing BaTiO3.
Open Research DataThe structure of vanadate glass-ceramics doped with BaTiO3 was measured by SEM technique. Samples of the composition of x[BaO,TiO2]–(80 − x)V2O5–20Bi2O3 where x = 5, 10 and 15 in mol% were prepared by a conventional melt quenching technique. The melting was performed in alumina crucibles at the temperature of 1273 K–1373 K. The melts were poured on...
-
Nonlinear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 3 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
Nonlinear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 10 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Open Research DataThe nonlinear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
-
The structure of strontium–borate glasses and glass-ceramics containing nanocrystallites of Bi2VO5.5. measured with X-ray diffraction method
Open Research DataThe structure of strontium–borate glasses and glass-ceramics containing Bi2VO5.5 nanocrystallites was measured by XRD.
-
The structure of 70(2Bi2O3-V2O5) - 30SrBO7 measured with X-ray diffraction and SEM methods
Open Research DataThe structure changes of 70(2Bi2O3-V2O5)-30SrB4O7 glass occurred during increase in temperature was measured by XRD and SEM.
-
Nonlinear impedance of vanadate glass-ceramics containing BaTiO3
Open Research DataThe nonlinear impedance of vanadate glasses doped with BaTiO3 was measured. Samples of the composition of x[BaO,TiO2]–(80 − x)V2O5–20Bi2O3 where x = 5, 10 and 15 in mol% were prepared by a conventional melt quenching technique. The melting was performed in alumina crucibles at the temperature of 1273 K–1373 K. The melts were poured on a preheated (573...
-
The structure of Bi2VO5.5 ceramic prepared by 3 different ways measured with X-ray diffraction
Open Research DataThe structure of Bi2VO5.5 ceramics was measured by XRD.
-
The topography of strontium–borate glasses and glass-ceramics containing nanocrystallites of Bi2VO5.5. measured with SEM method
Open Research DataThe topography of strontium–borate glasses and glass-ceramics containing nanocrystallites of Bi2VO5.5. was measured by SEM.
-
The structure of strontium–borate glass-ceramics containing crystalites of Bi2VO5.5. measured with X-ray diffraction and SEM methods
Open Research DataThe structure of strontium–borate glass-ceramics containing Bi2VO5.5 crystallites was measured by XRD and SEM.
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of water cooled materia
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of reference material materia (transverse direction)
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of reference material materia (longitudinal direction)
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - microstructure of naturally colled material
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - microstructure of water cooled material
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...