Filters
total: 1609
filtered: 1190
displaying 1000 best results Help
Search results for: automatic speech recognition
-
The Innovative Faculty for Innovative Technologies
PublicationA leaflet describing Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology. Multimedia Systems Department described laboratories and prototypes of: Auditory-visual attention stimulator, Automatic video event detection, Object re-identification application for multi-camera surveillance systems, Object Tracking and Automatic Master-Slave PTZ Camera Positioning System, Passive Acoustic Radar,...
-
Mispronunciation Detection in Non-Native (L2) English with Uncertainty Modeling
PublicationA common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result...
-
Marking the Allophones Boundaries Based on the DTW Algorithm
PublicationThe paper presents an approach to marking the boundaries of allophones in the speech signal based on the Dynamic Time Warping (DTW) algorithm. Setting and marking of allophones boundaries in continuous speech is a difficult issue due to the mutual influence of adjacent phonemes on each other. It is this neighborhood on the one hand that creates variants of phonemes that is allophones, and on the other hand it affects that the border...
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging
PublicationIn the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...
-
Integration in Multichannel Emotion Recognition
PublicationThe paper concerns integration of results provided by automatic emotion recognition algorithms. It presents both the challenges and the approaches to solve them. Paper shows experimental results of integration. The paper might be of interest to researchers and practitioners who deal with automatic emotion recognition and use more than one solution or multichannel observation.
-
Limitations of Emotion Recognition from Facial Expressions in e-Learning Context
PublicationThe paper concerns technology of automatic emotion recognition applied in e-learning environment. During a study of e-learning process the authors applied facial expressions observation via multiple video cameras. Preliminary analysis of the facial expressions using automatic emotion recognition tools revealed several unexpected results, including unavailability of recognition due to face coverage and significant inconsistency...
-
Applying the Lombard Effect to Speech-in-Noise Communication
PublicationThis study explored how the Lombard effect, a natural or artificial increase in speech loudness in noisy environments, can improve speech-in-noise communication. This study consisted of several experiments that measured the impact of different types of noise on synthesizing the Lombard effect. The main steps were as follows: first, a dataset of speech samples with and without the Lombard effect was collected in a controlled setting;...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublicationThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Emotion Recognition for Affect Aware Video Games
PublicationIn this paper the idea of affect aware video games is presented. A brief review of automatic multimodal affect recognition of facial expressions and emotions is given. The first result of emotions recognition using depth data as well as prototype affect aware video game are presented
-
An Attempt to Create Speech Synthesis Model That Retains Lombard Effect Characteristics
PublicationThe speech with the Lombard effect has been extensively studied in the context of speech recognition or speech enhancement. However, few studies have investigated the Lombard effect in the context of speech synthesis. The aim of this paper is to create a mathematical model that allows for retaining the Lombard effect. These models could be used as a basis of a formant speech synthesizer. The proposed models are based on dividing...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Automatic Classification of Polish Sign Language Words
PublicationIn the article we present the approach to automatic recognition of hand gestures using eGlove device. We present the research results of the system for detection and classification of static and dynamic words of Polish language. The results indicate the usage of eGlove allows to gain good recognition quality that additionally can be improved using additional data sources such as RGB cameras.
-
Automatic music set organizatio based on mood of music / Automatyczna organizacja bazy muzycznej na podstawie nastroju muzyki
PublicationThis work is focused on an approach based on the emotional content of music and its automatic recognition. A vector of features describing emotional content of music was proposed. Additionally, a graphical model dedicated to the subjective evaluation of mood of music was created. A series of listening tests was carried out, and results were compared with automatic mood recognition employing SOM (Self Organizing Maps) and ANN (Artificial...
-
SYNTHESIZING MEDICAL TERMS – QUALITY AND NATURALNESS OF THE DEEP TEXT-TO-SPEECH ALGORITHM
PublicationThe main purpose of this study is to develop a deep text-to-speech (TTS) algorithm designated for an embedded system device. First, a critical literature review of state-of-the-art speech synthesis deep models is provided. The algorithm implementation covers both hardware and algorithmic solutions. The algorithm is designed for use with the Raspberry Pi 4 board. 80 synthesized sentences were prepared based on medical and everyday...
-
Examining Feature Vector for Phoneme Recognition
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Limitations of Emotion Recognition in Software User Experience Evaluation Context
PublicationThis paper concerns how an affective-behavioural- cognitive approach applies to the evaluation of the software user experience. Although it may seem that affect recognition solutions are accurate in determining the user experience, there are several challenges in practice. This paper aims to explore the limitations of the automatic affect recognition applied in the usability context as well as...
-
Building Knowledge for the Purpose of Lip Speech Identification
PublicationConsecutive stages of building knowledge for automatic lip speech identification are shown in this study. The main objective is to prepare audio-visual material for phonetic analysis and transcription. First, approximately 260 sentences of natural English were prepared taking into account the frequencies of occurrence of all English phonemes. Five native speakers from different countries read the selected sentences in front of...
-
KORPUS MOWY ANGIELSKIEJ DO CELÓW MULTIMODALNEGO AUTOMATYCZNEGO ROZPOZNAWANIA MOWY
PublicationW referacie zaprezentowano audiowizualny korpus mowy zawierający 31 godzin nagrań mowy w języku angielskim. Korpus dedykowany jest do celów automatycznego audiowizualnego rozpoznawania mowy. Korpus zawiera nagrania wideo pochodzące z szybkoklatkowej kamery stereowizyjnej oraz dźwięk zarejestrowany przez matrycę mikrofonową i mikrofon komputera przenośnego. Dzięki uwzględnieniu nagrań zarejestrowanych w warunkach szumowych korpus...
-
Guido: a musical score recognition system
PublicationThis paper presents an optical music recognition system Guido that can automatically recognize the main musical symbols of music scores that were scanned or taken by a digital camera. The application is based on object model of musical notation and uses linguistic approach for symbol interpretation and error correction. The system offers musical editor with a partially automatic error correction.
-
Mining inconsistent emotion recognition results with the multidimensional model
PublicationThe paper deals with the challenge of inconsistency in multichannel emotion recognition. The focus of the paper is to explore factors that might influence the inconsistency. The paper reports an experiment that used multi-camera facial expression analysis with multiple recognition systems. The data were analyzed using a multidimensional approach and data mining techniques. The study allowed us to explore camera location, occlusions...
-
Uncertainty in emotion recognition
PublicationPurpose–The purpose of this paper is to explore uncertainty inherent in emotion recognition technologiesand the consequences resulting from that phenomenon.Design/methodology/approach–The paper is a general overview of the concept; however, it is basedon a meta-analysis of multiple experimental and observational studies performed over the past couple of years.Findings–The mainfinding of the paper might be summarized as follows:...
-
WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE
PublicationW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...
-
A comparative study of English viseme recognition methods and algorithm
PublicationAn elementary visual unit – the viseme is concerned in the paper in the context of preparing the feature vector as a main visual input component of Audio-Visual Speech Recognition systems. The aim of the presented research is a review of various approaches to the problem, the implementation of algorithms proposed in the literature and a comparative research on their effectiveness. In the course of the study an optimal feature vector...
-
A comparative study of English viseme recognition methods and algorithms
PublicationAn elementary visual unit – the viseme is concerned in the paper in the context of preparing the feature vector as a main visual input component of Audio-Visual Speech Recognition systems. The aim of the presented research is a review of various approaches to the problem, the implementation of algorithms proposed in the literature and a comparative research on their effectiveness. In the course of the study an optimal feature vector construction...
-
Rough Sets Applied to Mood of Music Recognition
PublicationWith the growth of accessible digital music libraries over the past decade, there is a need for research into automated systems for searching, organizing and recommending music. Mood of music is considered as one of the most intuitive criteria for listeners, thus this work is focused on the emotional content of music and its automatic recognition. The research study presented in this work contains an attempt to music emotion recognition...
-
Parameters optimization in medicine supporting image recognition algorithms
PublicationIn this paper, a procedure of automatic set up of image recognition algorithms' parameters is proposed, for the purpose of reducing the time needed for algorithms' development. The procedure is presented on two medicine supporting algorithms, performing bleeding detection in endoscopic images. Since the algorithms contain multiple parameters which must be specified, empirical testing is usually required to optimise the algorithm's...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Improvement of Image Binarization Methods Using Image Preprocessing with Local Entropy Filtering for Alphanumerical Character Recognition Purposes
PublicationAutomatic text recognition from the natural images acquired in uncontrolled lighting conditions is a challenging task due to the presence of shadows hindering the shape analysis and classification of individual characters. Since the optical character recognition methods require prior image binarization, the application of classical global thresholding methods in such case makes it impossible to preserve the visibility of all...
-
Noise profiling for speech enhancement employing machine learning models
PublicationThis paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...
-
Examining Feature Vector for Phoneme Recognition / Analiza parametrów w kontekście automatycznej klasyfikacji fonemów
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Recognition of hazardous acoustic events employing parallel processing on a supercomputing cluster . Rozpoznawanie niebezpiecznych zdarzeń dźwiękowych z wykorzystaniem równoległego przetwarzania na klastrze superkomputerowym
PublicationA method for automatic recognition of hazardous acoustic events operating on a super computing cluster is introduced. The methods employed for detecting and classifying the acoustic events are outlined. The evaluation of the recognition engine is provided: both on the training set and using real-life signals. The algorithms yield sufficient performance in practical conditions to be employed in security surveillance systems. The...
-
Selection of Features for Multimodal Vocalic Segments Classification
PublicationEnglish speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive...
-
PHONEME DISTORTION IN PUBLIC ADDRESS SYSTEMS
PublicationThe quality of voice messages in speech reinforcement and public address systems is often poor. The sound engineering projects of such systems take care of sound intensity and possible reverberation phenomena in public space without, however, considering the influence of acoustic interference related to the number and distribution of loudspeakers. This paper presents the results of measurements and numerical simulations of the...
-
Endoscopic Video Classification with the Consideration of Temporal Patterns
PublicationThe article describes a novel approach to automatic recognition and classification of diseases in endoscopic videos. Current directions of research in this field are discussed. Most presented methods focus on processing single frames and do not take into consideration the temporal relationship between continuous classifications. Existing approaches that consider the temporal structure of an incoming frame sequence are focused on...
-
Using MusicXML to evaluate accuracy of OMR Systems
PublicationIn this paper a methodology for automatic accuracy evaluation in optical music recognition (OMR) applications is proposed. Presented approach assumes using ground truth images together with digital music scores describing their content. The automatic evaluation algorithm measures differences between the tested score and the reference one, both stored in MusicXML format. Some preliminary test results of this approach are presented...
-
Further developments of parameterization methods of audio stream analysis for secuirty purposes
PublicationThe paper presents an automatic sound recognition algorithm intended for application in an audiovisual security monitoring system. A distributed character of security systems does not allow for simultaneous observation of multiple multimedia streams, thus an automatic recognition algorithm must be introduced. In the paper, a module for the parameterization and automatic detection of audio events is described. The spectral analyses...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublicationThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
Robot Eye Perspective in Perceiving Facial Expressions in Interaction with Children with Autism
PublicationThe paper concerns automatic facial expression analysis applied in a study of natural “in the wild” interaction between children with autism and a social robot. The paper reports a study that analyzed the recordings captured via a camera located in the eye of a robot. Children with autism exhibit a diverse level of deficits, including ones in social interaction and emotional expression. The aim of the study was to explore the possibility...
-
Trustworthy Applications of ML Algorithms in Medicine - Discussion and Preliminary Results for a Problem of Small Vessels Disease Diagnosis.
PublicationML algorithms are very effective tools for medical data analyzing, especially at image recognition. Although they cannot be considered as a stand-alone diagnostic tool, because it is a black-box, it can certainly be a medical support that minimize negative effect of human-factors. In high-risk domains, not only the correct diagnosis is important, but also the reasoning behind it. Therefore, it is important to focus on trustworthiness...
-
Towards Emotion Acquisition in IT Usability Evaluation Context
PublicationThe paper concerns extension of IT usability studies with automatic analysis of the emotional state of a user. Affect recognition methods and emotion representation models are reviewed and evaluated for applicability in usability testing procedures. Accuracy of emotion recognition, susceptibility to disturbances, independence on human will and interference with usability testing procedures are...
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Analysis of Image Preprocessing and Binarization Methods for OCR-Based Detection and Classification of Electronic Integrated Circuit Labeling
PublicationAutomatic recognition and classification of electronic integrated circuits based on optical character recognition combined with the analysis of the shape of their housings are essential to machine vision methods supporting the production of electronic parts, especially small-volume ones in the through-hole technology, characteristic of printed circuit boards. Since such methods utilize binary images, applying appropriate image...
-
Classifying type of vehicles on the basis of data extracted from audio signal characteristics
PublicationThe aim of this study is to find and optimize a feature vector for an automatic recognition of the type of vehicles, extracted form an audio signal. First, the influence of weather-based conditions of road surface on spectral characteristic of the audio signal recorded from a passing vehicle in close proximity to the road is discussed. Next, parameterization of the recorded audio signal is performed. For that purpose, the MIRtoolbox,...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Comparison of Lithuanian and Polish Consonant Phonemes Based on Acoustic Analysis – Preliminary Results
PublicationThe goal of this research is to find a set of acoustic parameters that are related to differences between Polish and Lithuanian language consonants. In order to identify these differences, an acoustic analysis is performed, and the phoneme sounds are described as the vectors of acoustic parameters. Parameters known from the speech domain as well as those from the music information retrieval area are employed. These parameters are...
-
Analiza stanu nawierzchni i klas pojazdów na podstawie parametrów ekstrahowanych z sygnału fonicznego
PublicationCelem badań jest poszukiwanie parametrów wektora cech ekstrahowanego z sygnału fonicznego w kontekście automatycznego rozpoznawania stanu nawierzchni jezdni oraz typu pojazdów. W pierwszej kolejności przedstawiono wpływ warunków pogodowych na charakterystykę widmową sygnału fonicznego rejestrowanego przy przejeżdżających pojazdach. Następnie, dokonano parametryzacji sygnału fonicznego oraz przeprowadzano analizę korelacyjną w celu...
-
Detection and localization of selected acoustic events in 3D acoustic field for smart surveillance applications
PublicationA method for automatic determination of position of chosen sound events such as speech signals and impulse sounds in 3-dimensional space is presented. The events are localized in the presence of sound reflections employing acoustic vector sensors. Human voice and impulsive sounds are detected using adaptive detectors based on modified peak-valley difference (PVD) parameter and sound pressure level. Localization based on signals...