Filters
total: 472
filtered: 461
-
Catalog
Chosen catalog filters
Search results for: ANTENNA MEASUREMENTS
-
Expedited Simulation-Driven Multi-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna
PublicationMajority of practical engineering design problems require simultaneous handling of several criteria. Although many of design tasks can be turned into single-objective problems using sufficient formulations, in some situations, acquiring comprehensive knowledge about possible trade-offs between conflicting objectives may be necessary. This calls for multi-objective optimization that aims at identifying a set of alternative, Pareto-optimal...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublicationAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Recent advances in rapid multiobjective optimization of expensive simulation models in microwave and antenna engineering by Pareto front exploration
PublicationPractical engineering design problems are inherently multiobjective, that is, require simultaneous control of several (and often conflicting) criteria. In many situations, genuine multiobjective optimization is required to acquire comprehensive information about the system of interest. The most popular solution techniques are populationbased metaheuristics, however, they are not practical for handling expensive electromagnetic...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublicationMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Computationally-efficient design optimisation of antennas by accelerated gradient search with sensitivity and design change monitoring
PublicationElectromagnetic (EM) simulation tools are of primary importance in the design of contemporary antennas. The necessity of accurate performance evaluation of complex structures is a reason why the final tuning of antenna dimensions, aimed at improvement of electrical and field characteristics, needs to be based on EM analysis. Design automation is highly desirable and can be achieved by coupling EM solvers with numerical optimisation...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
A Review of Antennas for Indoor Positioning Systems
PublicationThis paper provides a review of antennas applied for indoor positioning or localization systems. The desired requirements of thoseantennas when integrated in anchor nodes (reference nodes) are discussed, according to different localization techniques and theirperformance. The described antennas will be subdivided into the following sections according to the nature of measurements:received signal strength (RSS), time of flight (ToF),...
-
Interactive Application for Visualization of the Basic Phenomena in RF and Microwave Devices
PublicationAn interactive computer application visualizing the basic phenomena in RF and microwave devices is presented. Such kind of educational package can be a very helpful tool for the students as well as for the teachers (of electronics and related fields). This paper is focused on three exemplary problems only and involves: movement of electric charge, filtering of electromagnetic waves and interference phenomena in antenna arrays. The...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Expedited antenna optimization with numerical derivatives and gradient change tracking
PublicationDesign automation has been playing an increasing role in the development of novel antenna structures for various applications. One of its aspects is electromagnetic (EM)-driven design closure, typically applied upon establishing the antenna topology, and aiming at adjustment of geometry parameters to boost the performance figures as much as possible. Parametric optimization is often realized using local methods given usually reasonable...
-
Highly Miniaturized Self-Diplexed U-Shaped Slot Antenna Based on Shielded QMSIW
PublicationThis article presents an efficient yet simple design approach to highly miniaturized cavity-backed self-diplexing antenna (SDA) with high-isolation. The structure employs a shielded quarter-mode substrate integrated waveguide (QMSIW). Two U-shaped slots are engraved on the top conducting plane, which realize two frequency bands and significant size reduction. The slots are excited by two independent 50Ω orthogonal feed-lines to...
-
Performance evaluation of GPS anti-spoofing system based on antenna array processing
PublicationThis article concerns the problem of detection and mitigation of spoofing attacks in Global Navigation Satellite Systems. First, background information about spoofing and its possible countermeasures is provided. Next, concept of a novel GPS anti-spoofing system based on antenna array processing is presented and implementation of prototype of this system is described. The third section outlines the performance evaluation of proposed...
-
Impact of Spatial Noise Correlation on Bearing Accuracy in DIFAR Systems
PublicationDIFAR type underwater passive systems are one of the more commonly used tools for detecting submarines. At the design stage, which usually uses computer simulations, it is necessary to generate acoustic noise of the sea. It has been shown that correlating noise significantly reduces these errors compared to the assumption that noise is uncorrelated. In addition, bearing errors have been shown to be the same in systems with a commonly...
-
Design and Experimental Validation of a Metamaterial-Based Sensor for Microwave Imaging in Breast, Lung, and Brain Cancer Detection
PublicationThis study proposes an innovative geometry of a microstrip sensor for high-resolution microwave imaging (MWI). The main intended application of the sensor is early detection of breast, lung, and brain cancer. The proposed design consists of a microstrip patch antenna fed by a coplanar waveguide with a metamaterial layer-based lens implemented on the back side, and an artificial magnetic conductor (AMC) realized on as a separate...
-
Design and Optimization of Metamaterial-Based Dual-Band 28/38 GHz 5G MIMO Antenna with Modified Ground for Isolation and Bandwidth Improvement
PublicationThis letter presents a high-isolation dual-band multiple-input multiple-output (MIMO) antenna based on the ground plane modification and optimized metamaterials (MMs) for 5G millimeter-wave applications. The antenna is a monopole providing a dual-band response at 5G 28/38 bands with a small physical size (4.8 × 2.9 × 0.762 mm3, excluding the feeding line). The MIMO consists of two symmetric radiating elements arranged adjacently...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublicationData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
New Type of Small Broad-Band Internal Antenna for Third Generation Mobile Phone Handsets.
PublicationW pracy przedstawiono nową szerokopasmową antenę łatową przeznaczoną dla telefonów komórkowych trzeciej generacji. Proponowana struktura zawiera obwód (rezonator) w kształcie litery U i zaliczana jest do klasy PIFA (planar inverted-F antenna). W trakcie procesu projektowania przeprowadzono szereg symulacji elektromagnetycznych (metoda momentów), których wyniki zweryfikowano w oparciu o pomiary charakterystyk wykonanego prototypu....
-
High-precision bearing estimation for active sonar with cylindrical array performed by interpolated array transformation
PublicationThe article presents a method for improving the accuracy of bearing in multibeam sonar with a cylindrical array. The antenna’s non-linear shape and the resulting non-uniform sampling of the signal in space, mean that known methods of high-resolution spectral analysis cannot be used. In order to apply an algorithm from this group, a linear virtual antenna must be produced. The paper presents a technique of mapping a cylindrical...
-
A structure and design of a novel compact UWB MIMO antenna
PublicationIn the paper, a concept and design procedure of a novel compact MIMO slot antenna is presented. In order to achieve a better filling of available space, individual antennas are constrained to a triangular shape and optimized for a reduced size. The MIMO structure is then assembled using the two of previously designed antennas in orthogonal arrangement. Surrogate-assisted numerical optimization involving variable-fidelity electromagnetic...
-
Pin-on-Substrate Gap Waveguide: An Extremely Low-Cost Realization of High-Performance Gap Waveguide Components
PublicationConsidering the limitations of currently available technologies for the realization of microwave components and antennas, a trade-off between different factors including the efficiency and fabrication cost is required. The main objective of this letter is to propose a novel method for the realization of gap waveguides (GWGs) that take advantage of conventional PCB fabrication technology, thus are low cost and light weight. Moreover,...
-
An Improvement of Global Complex Roots and Poles Finding Algorithm for Propagation and Radiation Problems
PublicationAn improvement of the recently developed global roots finding algorithm has been proposed. The modification allows to shorten the computational time by reducing the number of function calls. Moreover, both versions of the algorithms (standard and modified) have been tested for numerically defined functions obtained from spectral domain approach and field matching method. The tests have been performed for three simple microwave...
-
Jacobi and gauss-seidel preconditioned complex conjugate gradient method with GPU acceleration for finite element method
PublicationIn this paper two implementations of iterative solvers for solving complex symmetric and sparse systems resulting from finite element method applied to wave equation are discussed. The problem under investigation is a dielectric resonator antenna (DRA) discretized by FEM with vector elements of the second order (LT/QN). The solvers use the preconditioned conjugate gradient (pcg) method implemented on Graphics Processing Unit (GPU)...
-
RSS-Based DoA Estimation Using ESPAR Antenna for V2X Applications in 802.11p Frequency Band
PublicationIn this paper, we have proposed direction-of arrival (DoA) estimation of incoming signals for V2X applications in 802. 11p frequency band, based on recording of received signal strength (RSS) at electronically steerable parasitic array radiator (ESPAR) antenna's output port. The motivation of the work was to prove that ESPAR antenna used to increase connectivity and security in V2X communication can be also used for DoA estimation....
-
Noise Analysis of Continuous GPS Time Series of Selected EPN Stations to Investigate Variations in Stability of Monument Types
PublicationThe type of monument that a GPS antenna is placed on plays a significant role in noise estimation for each permanent GPS station. In this research 18 Polish permanent GPS stations that belong to the EPN (EUREF Permanent Network) were analyzed using Maximum Likelihood Estimation (MLE). The antennae of Polish EPN stations are placed on roofs of buildings or on concrete pillars. The analyzed data covers a period of 5 years from 2008...
-
Frequency Selective Surface Based MIMO Antenna Array for 5G Millimeter-Wave Applications
PublicationAbstract: In this paper a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2×2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabri-cated on Rogers RT/Duroid high frequency substrate...
-
Nested Kriging with Variable Domain Thickness for Rapid Surrogate Modeling and Design Optimization of Antennas
PublicationDesign of modern antennas faces numerous difficulties, partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities (circular polarization, pattern diversity, band-notch operation), but also constraints imposed upon the physical size of the radiators. Conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise...
-
Reduced-Cost Design Optimization of High-Frequency Structures Using Adaptive Jacobian Updates
PublicationElectromagnetic (EM) analysis is the primary tool utilized in the design of high-frequency structures. In vast majority of cases, simpler models (e.g., equivalent networks or analytical ones) are either not available or lack accuracy: they can only be used to yield initial designs that need to be further tuned. Consequently, EM-driven adjustment of geometry and/or material parameters of microwave and antenna components is a necessary...
-
Simulation-Driven Design of Microstrip Antenna Subarrays
PublicationA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (e.g., a corporate network) on the subarray side lobe level and allows adjusting both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces designs...
-
Design of microstrip antenna subarrays: a simulation-driven surrogate-based approach
PublicationA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (here, a corporate network) on the subarray side-lobe level and allows adjustment of both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces...
-
UNDERWATER NOISE GENERATED BY A SMALL SHIP IN THE SHALLOW SEA
PublicationStudy of the sea noise has been a subject of interest for years. The first work of this scope were published at the turn of the twentieth century by Knudsen (KNUDSEN et al., 1948) and G. Wenz (WENZ, 1962). Disturbances called "shipping noise" are one of the important components of the sea noise. In this work the results of an experimental research of underwater noise produced by a small ship of a classic propulsion are...
-
Diver Observations by Means of Acoustic Methods
PublicationSearching for objects, especially small ones, moving under water near its the free surface, is always not an easy task. Designing tools for the detection of such targets is a real challenge when the possibility of a terrorist attack is a real threat. This paper presents some aspects of diver detection by means of acoustics methods, both active (side scan sonar) and passive ones (linear receiving antenna). This approach is quite...
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Resonance Frequency Calculation of a Multilayer and Multipatch Spherical Microstrip Structure Using a Hybrid Technique
PublicationThis communication offers a rigorous analysis of the resonance frequency problem of a spherical microstrip structure mounted on a multilayer, dielectric-coated metallic sphere, with an electrically small radius. The structure consists of single or multiple metallic patches with arbitrary shapes. A full-wave analysis is employed with the use of proposed hybrid approach, combining the finite-difference technique with a spectral domain...
-
Self-assemblies of novel magnesium porphyrins mimicking natural chlorosomal bacteriochlorophylls
PublicationSelf-assembling porphyrins are promising materials to mimic natural bacteriochlorophylls c, d, or e encountered in the chlorosomes of photosynthetic bacteria. We have studied four novel magnesium porphyrins mimicking this chlorosomal antenna system. In contrast to previous articles reporting synthetic Zn-porphyrins, our studies focus on porphyrins with Mg as the central atom, which mimic more closely the natural bacteriochlorophylls....
-
Linear antenna microwave chemical vapour deposition of diamond films on long-period fiber gratings for bio-sensing applications
PublicationThe growth processes of nanocrystalline diamond (NCD) thin films on fused silica optical fibers with UV-induced long-period gratings (LPGs) were investigated with regard to biosensing applications. The films were deposited using a linear antenna microwave plasma enhanced chemical vapor deposition system, which allows for the growth of diamond at temperatures below 350°C. The films exhibited a high refractive index n = 2.32, as...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
Analysis of radiation and scattering problems with the use of hybrid techniques based on the discrete Green's function formulation of the FDTD method
PublicationIn this contribution, simulation scenarios are presented which take advantage of the hybrid techniques based on the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method. DGF-FDTD solutions are compatible with the finite-difference grid and can be applied for perfect hybridization of the FDTD method. The following techniques are considered: (i) DGF-FDTD for antenna simulations, (ii) DGF-based...
-
The role of low-energy electrons in the charging process of LISA test masses
PublicationThe estimate of the total electron yield is fundamental for our understanding of the test-mass charging associated with cosmic rays in the Laser Interferometer Space Antenna (LISA) Pathfinder mission and in the forthcoming gravitational wave observatory LISA. To unveil the role of low energy electrons in this process owing to galactic and solar energetic particle events, in this work we study the interaction of keV and sub-keV...
-
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications
PublicationDesign of ultra-wideband antennas for in-door localization applications is a challenging task. It involves development of geometry that maintains appropriate balance between the size and performance. In this work, a topologically-flexible monopole has been generated using a stratified framework which embeds a gradient-based trust-region (TR) optimization algorithm in a meta-loop that gradually increases the structure dimensionality....
-
On Radar DoA Estimation and Tilted Rotating Electronically Scanned Arrays
PublicationWe consider DoA estimation in a monopulse radar system employing a tilted rotating array. We investigate the case of nonzero steering angles, in which case the mapping between the target’s azimuth and elevation in the global coordinate system and their counterparts in the array local coordinate system becomes increasingly nonlinear and coupled. Since estimating the azimuth using coherently integrated signals might be difficult because...
-
FPGA Acceleration of Matrix-Assembly Phase of RWG-Based MoM
PublicationIn this letter, the field-programmable-gate-array accelerated implementation of matrix-assembly phase of the method of moments (MoM) is presented. The solution is based on a discretization of the frequency-domain mixed potential integral equation using the Rao-Wilton-Glisson basis functions and their extension to wire-to-surface junctions. To take advantage of the given hardware resources (i.e., Xilinx Alveo U200 accelerator card),...
-
Low-fidelity model considerations for simulation-based optimisation of miniaturised wideband antennas
PublicationHere, variable-fidelity electromagnetic (EM)-based design optimisation of miniaturised antennas is discussed. The authors focus on an appropriate selection of discretisation density of the low-fidelity EM model, which results in good performance of the optimisation algorithm in terms of its computational complexity and reliability. Trust-region gradient search with low-fidelity model corrected by means of non-linear frequency scaling...
-
On low-fidelity models for variable-fidelity simulation-driven design optimization of compact wideband antennas
PublicationThe paper addresses simulation-driven design optimization of compact antennas involving variable-fidelity electromagnetic (EM) simulation models. Comprehensive investigations are carried out concerning selection of the coarse model discretization density. The effects of the low-fidelity model setup on the reliability and computational complexity of the optimization process are determined using a benchmark set of three ultra-wideband...
-
Three-objective antenna optimization by means of kriging surrogates and domain segmentation
PublicationIn this paper, an optimization framework for multi-objective design of antenna structures is discussed which exploits data-driven surrogates, a multi-objective evolutionary algorithm, response correction techniques for design refinement, as well as generalized domain segmentation. The last mechanism is introduced to constrain the design space region subjected to sampling, which permits reduction of the number of training data samples...
-
A Generalized SDP Multi-Objective Optimization Method for EM-Based Microwave Device Design
PublicationIn this article, a generalized sequential domain patching (GSDP) method for efficient multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems in the DTLZ series, and the results show the GSDP method...