Filters
total: 15
Search results for: solvent-casting
-
Fabrication of Composite Polyurethane/Hydroxyapatite Scaffolds Using Solvent-Casting Salt Leaching Technique
PublicationScaffolds are porous three-dimensional structures which are used to fill bone losses and make them possible to cells to grow. Many different structural and biological properties are required from them: porosity, mechanical strength and biocompability. The present research is aimed at development of composite polyurethane/hydroxyapatite scaffolds by using the solvent-casting salt leaching method. The SEM examinations were applied...
-
The porosity and morphology of PU foams prepared by solvent casting/salt leaching method with different solvents
PublicationIn this study, the polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol and ascorbic acid is used to prepare a foamed material. Polymer foams were created using solvent casting/salt-particle leaching (SC/PL) method. The influence of the PU concentration in different solutions [either in a DMF or in DMF with THF as a co-solvent] on the morphology and porosity of the...
-
Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil
PublicationIn this study, biocomposite films based on polyvinyl alcohol (PVA), gum arabic (GA) and chitosan (CS) incorporated with BPEO and GEO were fabricated by solvent casting method. FTIR, XRD, SEM and DSC were performed with mechanical and antimicrobial properties of PVA/GA/CS films with and without BPEO and GEO. The BPEO and GEO incorporated PVA/GA/CS films were significantly inhibited the growth of Bacillus cereus, Staphylococcus aureus,...
-
Use of Ginger Nanofibers for the Preparation of Cellulose Nanocomposites and Their Antimicrobial Activities
PublicationHere, we report, for the first time, the isolation of ginger nanofibers (GNF) from ginger rhizomes spent by acid hydrolysis and followed by high-pressure homogenization. Scanning electron microscopy was utilized to identify the surface morphology of the GNF and the widths ranged between 130 to 200 nm. Structural analysis of GNF was identified by Fourier transform infrared spectroscopy, Differential scanning calorimetry, and X-ray...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
PublicationIn this study, polyurethanes (PU) were synthesized from oligomeric dihydroxy(etylene-butylene adipate), poly(ethylene glycol) (PEG), hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO) as chain extender and stannous octoate as catalyst. PEG due to its hydrophilic character influences physical and chemical properties of PU. For testing were used PU having the following weigh contents of PEG: 0%, 7%, and 14%. Porous scaffolds...
-
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublicationIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
A review: Fabrication of porous polyurethane scaffolds
PublicationThe aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical...
-
Gelatin and gelatin/starch-based films modified with sorbitol for wound healing
PublicationGelatin-based films modified with sorbitol were produced from gelatin solution or gelatin/starch blends using a simple and low-cost solvent casting method, and subsequently, their physicochemical, mechanical, and biocompatibility properties were characterized. This work focused on developing and optimizing a biopolymeric blend to improve the pure biopolymers’ properties for potential biomedical applications such as wound dressing....
-
Antibacterial polyurethanes, modifed with cinnamaldehyde, as potential materials for fabrication of wound dressings
PublicationThe epidermis is a skin layer, which protects an organism from the different factors of external environment. Therefore, the fast and effective regeneration of epidermis is important. Potential materials used for epidermis regeneration may be polyurethane scaffolds in form of the thin permeable layers. One and main disadvantage of such polyurethane scaffolds are their lack of antibacterial and antifungal properties. The great proposition...
-
Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites?
PublicationThin nanocomposite films of polyurethane have received remarkable attention due to their shape memory properties. As most of the reports focus on the beneficial aspects of the presence of nanofillers such as graphene nanoplatelets (GNPs) introduced into shape memory polymers, some research results reveal the opposite trend. The polyether/polyester-based polyurethane was synthesized through a condensation polymerization and the...
-
Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering
PublicationThe literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL). The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than...
-
Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications
PublicationTissue engineering requires suitable polymeric scaffolds, which act as a physical support for regenerated tissue. A promising candidate might be polyurethane (PUR) scaffold, due to the ease of the PUR properties design, which can be adjusted directly to the intended purpose. In this study, we report a successful fabrication of porous polyurethane scaffolds (PPS) using solvent casting/particulate leaching technique combined with...
-
Chitosan-Based Membranes as Gentamicin Carriers for Biomedical Applications — Influence of Chitosan Molecular Weight
PublicationOver the past decade, much attention has been paid to chitosan as a potential drug carrier because of its non-toxicity, biocompatibility, biodegradability and antibacterial properties. The effect of various chitosan characteristics on its ability to carry different antibiotics is discussed in the literature. In this work, we evaluated the influence of the different molecular weights of this polymer on its potential as an antibacterial...
-
The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication
PublicationIn this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as...
-
Golden artefacts, resin figurines, body adhesives and tomb sediments from the pre-Columbian burial site El Caño (Gran Coclé, Panamá): tracing organic contents using molecular archaeometry
PublicationThis research aimed to determine the origin of organic residues from funerary contexts in the El Ca~no settlement (Gran Cocl�e area, Panam�a, Central America) by means of multiple molecular probing techniques (GC-MS of organic solvent extracts and pyrolysis-GC-MS, THM-GC-MS and FTIR of solid samples). The samples include particles of precious resin figurines, fillings of golden objects, tomb sediments, plant exudates from extant...