Filters
total: 261
Search results for: NUMERICAL COMPUTATIONS
-
Morse decompositions for a population model with harvesting. Case He-Se: Equal harvesting and equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Morse decompositions for a population model with harvesting. Case Hj-Se: Harvesting juveniles only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Morse decompositions for a population model with harvesting. Case Hj-S1: Harvesting juveniles only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Continuation classes for a population model with harvesting. Case He-S1: Equal harvesting of juveniles and adults, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Continuation classes for a population model with harvesting. Case Ha-S1: Harvesting adults only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Continuation classes for a population model with harvesting. Case He-Se: Equal harvesting and equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Continuation classes for a population model with harvesting. Case Hj-S1: Harvesting juveniles only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Continuation classes for a population model with harvesting. Case Hj-Se: Harvesting juveniles only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Continuation classes for a population model with harvesting. Case Ha-Se: Harvesting adults only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Ha-S1: Harvesting adults only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case He-S1: Equal harvesting of juveniles and adults, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Hj-Se: Harvesting juveniles only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case He-Se: Equal harvesting and equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Hj-S1: Harvesting juveniles only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Ha-Se: Harvesting adults only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Virtual Space Vector Pulse Width Modulation Algorithm for Three-Level NPC Converters Based on the Final Element Shape Functions
PublicationThe paper puts forth a novel idea for the computation of Nearest Three Virtual Space Vector Pulse Width Modulation for the three level NPC converters. The computations are based on the concept of final element shape function widely used in the domain of finite element analysis. The proposed approach significantly frees the computations from the use of trigonometric functions, which simplifies the computations and permits easier...
-
Simulation of parallel similarity measure computations for large data sets
PublicationThe paper presents our approach to implementation of similarity measure for big data analysis in a parallel environment. We describe the algorithm for parallelisation of the computations. We provide results from a real MPI application for computations of similarity measures as well as results achieved with our simulation software. The simulation environment allows us to model parallel systems of various sizes with various components...
-
Accurate Computation of IGBT Junction Temperature in PLECS
PublicationIn the article, a new method to improve the accuracy of the insulated-gate bipolar transistor (IGBT) junction temperature computations in the piecewise linear electrical circuit simulation (PLECS) software is proposed and described in detail. This method allows computing the IGBT junction temperature using a nonlinear compact thermal model of this device in PLECS. In the method, a nonlinear compact thermal model of the IGBT is...
-
Automatic Discovery of IaaS Cloud Workload Types
PublicationThe paper presents an approach to automatic discovery of workloads types. We perform functional characteristics of the workloads executed in our cloud environment, that have been used to create model of the computations. To categorize the resources utilization we used K-means algorithm, that allow us automatically select six types of computations. We perform analysis of the discovered types against to typical computational benchmarks,...
-
The chapter analyses the K-Means algorithm in its parallel setting. We provide detailed description of the algorithm as well as the way we paralellize the computations. We identified complexity of the particular steps of the algorithm that allows us to build the algorithm model in MERPSYS system. The simulations with the MERPSYS have been performed for different size of the data as well as for different number of the processors used for the computations. The results we got using the model have been compared to the results obtained from real computational environment.
PublicationThe chapter analyses the K-Means algorithm in its parallel setting. We provide detailed description of the algorithm as well as the way we paralellize the computations. We identified complexity of the particular steps of the algorithm that allows us to build the algorithm model in MERPSYS system. The simulations with the MERPSYS have been performed for different size of the data as well as for different number of the processors used...
-
Parallel Implementation of the Discrete Green's Function Formulation of the FDTD Method on a Multicore Central Processing Unit
PublicationParallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method was developed on a multicore central processing unit. DGF-FDTD avoids computations of the electromagnetic field in free-space cells and does not require domain termination by absorbing boundary conditions. Computed DGF-FDTD solutions are compatible with the FDTD grid enabling the perfect hybridization of FDTD...
-
Investigation of Parallel Data Processing Using Hybrid High Performance CPU + GPU Systems and CUDA Streams
PublicationThe paper investigates parallel data processing in a hybrid CPU+GPU(s) system using multiple CUDA streams for overlapping communication and computations. This is crucial for efficient processing of data, in particular incoming data stream processing that would naturally be forwarded using multiple CUDA streams to GPUs. Performance is evaluated for various compute time to host-device communication time ratios, numbers of CUDA streams,...
-
Accurate electrothermal modelling of high frequency DC-DC converters with discrete IGBTs in PLECS software
PublicationIn the paper, a novel, improved method of the IGBT junction temperature computations in the PLECS simulation software is presented. The developed method aims at accuracy of the junction temperature computations in PLECS by utilising a more sophisticated model of transistor losses, and by taking into account variability of transistor thermal resistance as a function of its temperature. A detailed description of the proposed method,...
-
Open-Source Coprocessor for Integer Multiple Precision Arithmetic
PublicationThis paper presents an open-source digital circuit of the coprocessor for an integer multiple-precision arithmetic (MPA). The purpose of this coprocessor is to support a central processing unit (CPU) by offloading computations requiring integer precision higher than 32/64 bits. The coprocessor is developed using the very high speed integrated circuit hardware description language (VHDL) as an intellectual property (IP) core. Therefore,...
-
Implementation of FDTD-Compatible Green's Function on Graphics Processing Unit
PublicationIn this letter, implementation of the finite-difference time domain (FDTD)-compatible Green's function on a graphics processing unit (GPU) is presented. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates its applications in the FDTD simulations of radiation and scattering problems. Unfortunately, implementation of the new DGF formula in software requires a multiple precision...
-
Benchmarking Performance of a Hybrid Intel Xeon/Xeon Phi System for Parallel Computation of Similarity Measures Between Large Vectors
PublicationThe paper deals with parallelization of computing similarity measures between large vectors. Such computations are important components within many applications and consequently are of high importance. Rather than focusing on optimization of the algorithm itself, assuming specific measures, the paper assumes a general scheme for finding similarity measures for all pairs of vectors and investigates optimizations for scalability...
-
Performance and Power-Aware Modeling of MPI Applications for Cluster Computing
PublicationThe paper presents modeling of performance and power consumption when running parallel applications on modern cluster-based systems. The model includes basic so-called blocks representing either computations or communication. The latter includes both point-to-point and collective communication. Real measurements were performed using MPI applications and routines run on three different clusters with both Infiniband and Gigabit Ethernet...
-
Genetic Positioning of Fire Stations Utilizing Grid-computing Platform
PublicationA chapter presents a model for determining near-optimal locations of fire stations based on topography of a given area and location of forests, rivers, lakes and other elements of the site. The model is based on principals of genetic algorithms and utilizes the power of the grid to distribute and execute in parallel most performance-demanding computations involved in the algorithm.
-
Acceleration of the discrete Green's function computations
PublicationResults of the acceleration of the 3-D discrete Green's function (DGF) computations on the multicore processor are presented. The code was developed in the multiple precision arithmetic with use of the OpenMP parallel programming interface. As a result, the speedup factor of three orders of magnitude compared to the previous implementation was obtained thus applicability of the DGF in FDTD simulations was significantly improved.
-
Computational algorithm for the analysis of mechatronic systems with distributed parameter elements
PublicationThe paper presents a systematic computational package for analysis of complex systems composed of multiple lumped and distributed parameter subsystems. The algorithm is based on the transfer function method (DTFM). With this algorithm, a bond graph technique for the modelling is developed to simplify computations. Analysis of different systems requires only changing the inputs data in the form of the bond graph diagram
-
Random field model of foundations at the example of continuous footing
PublicationThe purpose of the paper is to indicate an efficient method of foundation settlement analysis taking into account the variability of soil properties. The impact of the random variable distribution (Gauss or Lognormal) describing soil stiffness on foundation deposits was assessed. The Monte Carlo simulation method was applied in the computations. The settlements of the strip foundation with the subsoil described by a single random...
-
Krylov Space Iterative Solvers on Graphics Processing Units
PublicationCUDA architecture was introduced by Nvidia three years ago and since then there have been many promising publications demonstrating a huge potential of Graphics Processing Units (GPUs) in scientific computations. In this paper, we investigate the performance of iterative methods such as cg, minres, gmres, bicg that may be used to solve large sparse real and complex systems of equations arising in computational electromagnetics.
-
Using GPUs for Parallel Stencil Computations in Relativistic Hydrodynamic Simulation
PublicationThis paper explores the possibilities of using a GPU for complex 3D finite difference computation. We propose a new approach to this topic using surface memory and compare it with 3D stencil computations carried out via shared memory, which is currently considered to be the best approach. The case study was performed for the extensive computation of collisions between heavy nuclei in terms of relativistic hydrodynamics.
-
SIMPLIFIED MODELING OF STRESS AND DEFLECTION LIMIT STATES OF UNDERGROUND TANKS
PublicationFuel tanks are designed with regard to standard actions and operating conditions. The work analyses the impact of corrosion and other means to variation of stresses and deformation of a horizontal underground tank shell. The computations are preliminary. Due to the long computational time of the entire tank the analysis is restricted to its part only. The full analysis is bound to assess structural reliability, further allowing...
-
Windowing of the Discrete Green's Function for Accurate FDTD Computations
PublicationThe paper presents systematic evaluation of the applicability of parametric and nonparametric window functions for truncation of the discrete Green's function (DGF). This function is directly derived from the FDTD update equations, thus the FDTD method and its integral discrete formulation can be perfectly coupled using DGF. Unfortunately, the DGF computations require processor time, hence DGF has to be truncated with appropriate...
-
GPU-accelerated finite element method
PublicationIn this paper the results of the acceleration of computations involved in analysing electromagnetic problems by means of the finite element method (FEM), obtained with graphics processors (GPU), are presented. A 4.7-fold acceleration was achieved thanks to the massive parallelization of the most time-consuming steps of FEM, namely finite-element matrix-generation and the solution of a sparse system of linear equations with the...
-
Expedited optimization of antenna input characteristics with adaptive Broyden updates
PublicationSimulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise...
-
Model of Volunteer Based Systems.
PublicationThere are two main approaches to processing tasks requiring high amounts of computational power. One approach is using clusters of mostly identical hardware, placed in dedicated locations. The other approach is outsourcing computing resources from large numbers of volunteers connected to the Internet. This chapter attempts to formulate a mathematical model of the volunteer based approach to distributed computations and apply it...
-
Applications of the discrete green's function in the finite-difference time-domain method
PublicationIn this paper, applications of the discrete Green's function (DGF) in the three-dimensional (3-D) finite-difference time-domain (FDTD) method are presented. The FDTD method on disjoint domains was developed employing DGF to couple the subdomains as well as to compute the electromagnetic field outside these subdomains. Hence, source and scatterer are simulated in separate subdomains and updating of vacuum cells, being of little...
-
Gender approach to multi-objective optimization of detection systems by pre-selection of criteria
PublicationA novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA)...
-
Gender approach to multi-objective optimization of detection systems by pre-selection of criteria
PublicationA novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA)...
-
OpenGL accelerated method of the material matrix generation for FDTD simulations
PublicationThis paper presents the accelerated technique of the material matrix generation from CAD models utilized by the finite-difference time-domain (FDTD) simulators. To achieve high performance of these computations, the parallel-processing power of a graphics processing unit was employed with the use of the OpenGL library. The method was integrated with the developed FDTD solver, providing approximately five-fold speedup of the material...
-
Gender approach to multi-objective optimization of detection systems by pre-selection of criteria
PublicationA novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA)...
-
Computer application for railway track realignment
PublicationThe topic of this article is the issue of railway track realignment. For this purpose, a computer software application was created that supports computations and generates a report needed for regulation of the trajectory of the railway. This program gives the ability to import data from measurement of the railway trajectory and then perform the calculation of the mathematical realignment. The result of this calculation is the basis...
-
On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method
PublicationCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However,...
-
On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method
PublicationCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However,...
-
On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method
PublicationCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However,...
-
Acceleration of the Discrete Green’s Function Formulation of the FDTD Method Based on Recurrence Schemes
PublicationIn this paper, we investigate an acceleration of the discrete Green's function (DGF) formulation of the FDTD method (DGF-FDTD) with the use of recurrence schemes. The DGF-FDTD method allows one to compute FDTD solutions as a convolution of the excitation with the DGF kernel. Hence, it does not require to execute a leapfrog time-stepping scheme in a whole computational domain for this purpose. Until recently, the DGF generation...
-
Probabilistic Analysis of Structure Models using Target Random Sampling (TRS)
PublicationThe work presents testing methods of sensitivity and reliability of mechanical or structural systems. All computations concerned the case of Zigler column, a simple model of a compressed column involving two random variables only. A conclusion was drawn that the standard Monte Carlo method, its reduction variants and the response surface method allow to assess the sensitivity of structural response to the variation of random structural...
-
Multi-GPU UNRES for scalable coarse-grained simulations of very large protein systems
PublicationGraphical Processor Units (GPUs) are nowadays widely used in all-atom molecular simulations because of the advantage of efficient partitioning of atom pairs between the kernels to compute the contributions to energy and forces, thus enabling the treatment of very large systems. Extension of time- and size-scale of computations is also sought through the development of coarse-grained (CG) models, in which atoms are merged into extended...