Search results for: ELECTRON SCATTERING
-
Finite element/mode-matching analysis of ferrite/dielectric line junctions of arbitrary cross-section
PublicationThis paper is focused on the analysis of line junctions obtained as a cascade of dielectric and ferrite guides of arbitrary cross-section. The main application of such structures is nonreciprocal devices such as isolators, circulators, or phase shifters. The efficient finite element/mode-matching approach is proposed to the analysis of such structures. In this approach, thefiniteelementmethod is applied todetermine propagation...
-
Measurements of Spectral Spatial Distribution of Scattering Materials for Rear Projection Screens used in Virtual Reality Systems
PublicationRapid development of computing and visualisation systems has resulted in an unprecedented capability to display, in real time, realistic computer-generated worlds. Advanced techniques, including three-dimensional (3D) projection, supplemented by multi-channel surround sound, create immersive environments whose applications range from entertainment to military to scientific. One of the most advanced virtual reality systems are CAVE-type...
-
Measurements of fundamental properties of homogeneous tissue phantoms
PublicationWe present the optical measurement techniques used in human skin phantom studies. Their accuracy and the sources of errors in microscopic parameters’ estimation of the produced phantoms are described. We have produced optical phantoms for the purpose of simulating human skin tissue at the wavelength of 930 nm. Optical coherence tomography was used to measure the thickness and surface roughness and to detect the internal inhomogeneities....
-
Positron scattering on molecular hydrogen: Analysis of experimental and theoretical uncertainties
PublicationExperiments performed in recent years on positron scattering from molecular hydrogen indicated a rise of the total cross section in the limit of zero energy, but essentially disagree on the amplitude of this rise. Mitroy and collaborators [J.-Y. Zhang et al., Phys. Rev. Lett. 103, 223202 (2009)] predicted a scattering length somewhat different from values deduced experimentally. Using a Markov chain Monte Carlo modified effective...
-
An Analysis of Scattering from Ferrite Post of Arbitrary Convex Cross Section with the Use of Field Matching Method
PublicationA problem of electromagnetic wave scattering from ferrite post is presented. The post is assumed to be located in closed areas as waveguide junction, or in open area illuminated by a plane wave. The object is of arbitrary convex cross section and the method of analysis is semi-analytical, based on the direct field matching technique.
-
The POCOBIO Database for Computed Scattering Cross-Sections for Positron Collisions with Biomolecular Systems
PublicationThe design of a database for positron interactions with biomolecular systems is outlined. The database contains only scattering cross sections, which are derived from theory. The data model is defined in a very flexible way, which facilitates the usage of weakly bound clusters of molecules and molecular systems with many tautomeric forms.
-
Positron Scattering and Annihilation in Organic Molecules
PublicationIn this paper, we address the problem of connecting positron lifetimes in liquids with collision cross sections in gases. We present the analyses of annihilation lifetime spectra of positrons in the liquid benzene, c-hexane, n-hexane, methanol and ethanol and calculations of scattering cross sections of positrons with benzene and c-hexane in the gas phase.
-
Modified nanodiamond particle size studies by means of dynamic light scattering technique
PublicationThe Methods Utilizing the Phenomena of Light Scattering to Measure Particle Size distribution in different solvent, such as deionise water and alcohol and also to study the various structural formation when nanodiamond solution is placed on silicon surface. The purpose of this research project is divided into two parts to configure the measurement units for examining modified nanodiamond particles, examination...
-
Modified nanodiamond particle size studies by means of dynamic light scattering technique
PublicationThe Methods Utilizing the Phenomena of Light Scattering to Measure Particle Size distribution in different solvent, such as deionise water and alcohol and also to study the various structural formation when nanodiamond solution is placed on silicon surface. The purpose of this research project is divided into two parts to configure the measurement units for examining modified nanodiamond particles, examination...
-
Limitations of WSSUS modeling of stationary underwater acoustic communication channel
PublicationPerformances of underwater acoustic communication (UAC) systems are strongly related to specific propagation conditions of the underwater channel. Due to their large variability, there is a need for adaptive matching of the UAC systems signaling to the transmission properties of the channel. This requires a knowledge of instantaneous channel characteristics, in terms of the specific parameters of stochastic models. The wide-sense...
-
An Analysis of Periodic Arrangements of Cylindrical Objects of Arbitrary Convex Cross Sections with the Use of Field Matching Method
PublicationA problem of electromagnetic wave scattering from multilayered frequency selective surfaces is presented. Each surface is composed of periodically arranged cylindrical posts of arbitrary convex cross-section. The method of analysis is based on the direct field matching technique for a single cell, and the transmission matrix method with the lattice sums technique for periodic arrangement of scatterers.
-
Properties of ordered titanium templates covered with Au thin films for SERS applications
PublicationtCurrently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering sub-strates that show application potential in biochemistry, food safety or medical diagnostic. In this workthe structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) ofhighly ordered nano-patterned titanium templates covered with thin (5–20 nm) gold films are reported.The templates are formed...
-
Beyond the helium buffer: 12C−2 rotational cooling in cold traps with H2 as a partner gas: interaction forces and quantum dynamics
Publicationabstract = { The scattering cross-sections and corresponding rate coefficients for rotationally inelastic collisions of $^{12}$C$_2$^-$ ($^2 \Sigma_g^+$) with H$_2$ ($^1 \Sigma_g^+$) are presented over a broad range of cold-trap temperatures. They have been calculated using quantum scattering theory that employs a new ab initio potential energy surface. The rate coefficients for the inelastic processes in the anionic partner are...
-
Small-Angle Neutron Scattering Study of the Structure of Mixed Micellar Solutions Based on Heptaethylene Glycol Monotetradecyl Ether and Cesium Dodecyl Sulfate
PublicationThe micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C14E7), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C14E7 aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.
-
Comparison of simplified sum-over-state expressions to calculate resonance Raman intensities including Franck-Condon and Herzberg-Teller effects
PublicationSum-over-state (SOS) expressions to simulate absorption spectroscopy and resonance Raman (RR) scattering including Franck-Condon (FC) and Herzberg-Teller (HT) effects are described. Starting from the general SOS method, several simplified SOS formulae are derived. In particular, within the so-called independent mode displaced harmonic oscillator model, it is shown that including the vibronic structure in the absorption and RR spectra...
-
Studies on formation and percolation in ionic liquids/TX-100/water microemulsions
PublicationTernary microemulsion systems of H2O/Triton X-100/[BMIM][Tf2N], and H2O/Triton X-100/[BMIM][PF6] were prepared, compared and characterized for phase behavior for different water/surfactant ratios, at 25 °C. It was found that a change of an anion structure in the ionic liquids determines the total monophasic area of the systems. A liquid crystalline mesophase was detected in H2O/Triton X-100/[BMIM][PF6]. The microemulsion domains...
-
Simplified Approach for Broadband RF Testing of Low Loss Magneto-Dielectric Samples
PublicationIn this paper, an attractive measurement techniqueis proposed to retrieve the broadband permittivity and permeabil-ity of the magneto-dielectric materials. The proposed techniqueis quite novel which mitigates the major problems associatedwith the conventional broadband RF material characterizationtechniques such as numerical instability and phase uncertaintywhen the length of the sample exceeds...
-
Colored Tattoo Ink Screening Method with Optical Tissue Phantoms and Raman Spectroscopy
PublicationDue to the increasing popularity of tattoos among the general population, to ensure their safety and quality, there is a need to develop reliable and rapid methods for the analysis of the composition of tattoo inks, both in the ink itself and in already existing tattoos. This paper presents the possibility of using Raman spectroscopy to examine tattoo inks in biological materials. We have developed optical tissue phantoms mimicking...
-
Scattering From a Cylindrical Object of Arbitrary Cross Section With the Use of Field Matching Method
PublicationA simple and intuitive solution to scattering problems in shielded and open structures is presented. The main idea of the analysis is based on the direct field matching technique involving the usage of projection of the fields at the boundary on a fixed set of orthogonal basis functions. Different convex shapes and various obstacle materials are considered to verify the validity of the method in open and closed structures. The...
-
Nonreciprocal properties of elliptical ferrite coupled line junction
PublicationIn this paper the nonreciprocal properties of el-liptical ferrite coupled line (EFCL) junction are examined. In the analysis the technique combining spectral-domain approach (SDA) with coupled-mode method (CMM) is applied. The nu-merical results concerning gyromagnetic coupling coefficient of ferrite coupled lines and scattering matrix of EFCL junction are presented. The obtained results are validated with the use of commercial...
-
Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring
PublicationThis work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating...
-
Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring
PublicationThis work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating...
-
Analysis and characterization of coordination compounds by resonance Raman spectroscopy
PublicationResonance Raman spectroscopy has become a powerful tool to study excited-state geometries, excited-state charge distributions and photoinduced reaction dynamics in coordination compounds. Due to their rich photophysical properties coordination compounds are utilized for a variety of applications ranging from DNA sensing to photocatalysis. This review features recent applications of various resonance Raman scattering techniques...
-
SmallAngle Neutron Scattering Study of the Structure of Mixed Micellar Solutions Based on Nonionic and Two Cationic Surfactants
PublicationThe aggregation in mixed water systems based on nonionic surfactant, i.e., heptaethylene glycol monotetradecyl ether (C14E7), and cationic surfactants, i.e., cetyltrimethylammonium bromide (CTAB), and cetyltrimethylammonium chloride (CTAC) has been investigated using the smallangle neutron scattering method. The preliminary results of the study of the behavior of C14E7 aqueous solutions (for a concentration of 0.17%) when adding...
-
Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO
PublicationX-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of...
-
Zero-Pole Electromagnetic Optimization
PublicationA fast technique for the full-wave optimization of transmission or reflection properties of general linear timeinvariant high-frequency components is proposed. The method is based on the zeros and poles of the rational function representing the scattering parameters of the device being designed and it is the generalization of the technique developed for the design by optimization of microwave filters. The performance of the proposed...
-
Coherent-wave Monte Carlo method for simulating light propagation in tissue
PublicationSimulating propagation and scattering of coherent light in turbid media, such as biological tissues, is a complex problem. Numerical methods for solving Helmholtz or wave equation (e.g. finite-difference or finite-element methods) require large amount of computer memory and long computation time. This makes them impractical for simulating laser beam propagation into deep layers of tissue. Other group of methods, based on radiative...
-
Surface active fatty acid ILs: Influence of the hydrophobic tail and/or theimidazolium hydroxyl functionalization on aggregates formation
PublicationNine structurally-related fatty acid ionic liquids have been prepared and their thermal behavior as well as their ability to self-assemble in water has been investigated. The thermal properties were studied by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), while the aggregation behavior was analyzed by tensiometry, isothermal titration calorimetry (ITC), conductometry, dynamic light scattering (DLS),...
-
Identification of Optocoupler Devices with RTS Noise
PublicationThe results of noise measurements in low frequency range for CNY 17 type optocouplers are presented. The research were carried out on devices with different values of Current Transfer Ratio (CTR). The methods for identification of Random Telegraph Signal (RTS) in noise signal of optocouplers were proposed. It was found that the Noise Scattering Pattern method (NSP method) enables to identify RTS noise as non-Gaussian component...
-
Zero-Pole Space Mapping for CAD of Filters
PublicationIn this paper, we propose a new space-mapping technique tailored to the CAD of microwave filters. The goal of space mapping is to achieve a satisfactory design with the minimal number of fine model evaluations. In our approach, the filter is represented by a rational function. To quickly align the coarse and fine models, and to speed up the direct optimization of the coarse model, we propose matching the zeros and poles of a rational...
-
Communication Model Order Reduction in Hybrid Methods Involving Generalized Impedance Matrix
PublicationA novel strategy for the efficient analysis of frequency-domain scattering electromagnetic problems in open and closed domains is presented. A fully automatic model-order reduction technique, called the enhanced reduced-basis method, is applied to increase the efficiency of the hybrid approach, which combines the finite-element and mode-matching methods. Numerical tests show that the proposed algorithm yields reliable and highly...
-
Integrable zero-range potentials in a plane
PublicationWe examine general statements in the Wronskian representation of Darboux transformations for plane zero-range potentials. Such expressions naturally contain scattering problem solution. We also apply Abel theorem to Wronskians for differential equations and link it to chain equations for Darboux transforms to fix conditions for further development of the underlying distribution concept. Moutard transformations give a convenient...
-
Accuracy of the discrete Green's function computations
PublicationThis paper discusses the accuracy of the discrete Green's function (DGF) computations. Recently closed-form expression of the DGF and its efficient numerical implementation were presented which facilitate the DGF applications in FDTD simulations of radiation and scattering problems. By carefully comparing the DGF results to those of the FDTD simulation, one can make conclusions about the range of the applicability of the DGF for...
-
Left-handed propagation characteristics of a dielectric and metal-loaded periodic circular waveguide
PublicationIn this paper, a periodic dielectric/metallic rod is located in a circular waveguide to obtain left-handed operation. Two geometries of the dielectric/metallic rod are proposed and examined. The dispersion characteristics of the investigated waveguides are obtained using a surface impedance model. Moreover, equivalent circuit models are proposed allowing for calculation of the dispersion characteristics and scattering parameters...
-
Hybrid Technique for the EM Scattering Analysis with the Use of Ring Domain Decomposition
PublicationA hybrid technique combining finite-element and mode-matching methods for the analysis of scattering problems in open space is presented here. The main idea is based on impedance matrix descriptions of the boundary surrounding the discrete computational domain and combine it with external field described analytically. The discrete analysis, which is the most time- and memory-consuming, is limited here only to the close proximity...
-
Use of optical skin phantoms for calibration of dermatological lasers
PublicationA wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties,...
-
Greedy Multipoint Model-Order Reduction Technique for Fast Computation of Scattering Parameters of Electromagnetic Systems
PublicationThis paper attempts to develop a new automated multipoint model-order reduction (MOR) technique, based on matching moments of the system input–output function, which would be suited for fast and accurate computation of scattering parameters for electromagnetic (EM) systems over a wide frequency band. To this end, two questions are addressed. Firstly, the cost of the wideband reduced model generation is optimized by automating a...
-
Multi-layered tissue head phantoms for noninvasive optical diagnostics
PublicationExtensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical...
-
Novel approach to modeling spectral-domain optical coherence tomography with Monte Carlo method
PublicationNumerical modeling Optical Coherence Tomography (OCT) systems is needed for optical setup optimization, development of new signal processing methods and assessment of impact of different physical phenomena inside the sample on OCT signal. The Monte Carlo method has been often used for modeling Optical Coherence Tomography, as it is a well established tool for simulating light propagation in scattering media. However, in this method...
-
Analytical calculations of scattering lengths for a class of long-range potentials of interest for atomic physics
PublicationWe derive two equivalent analytical expressions for an $l$th partial-wave scattering length $a_{l}$ for central potentials with long-range tails of the form % \begin{math} \displaystyle V(r)=-\frac{\hbar^{2}}{2m}\frac{Br^{n-4}}{(r^{n-2}+R^{n-2})^{2}} -\frac{\hbar^{2}}{2m}\frac{C}{r^{2}(r^{n-2}+R^{n-2})}, \end{math} % ($r\geqslant r_{s}$, $R>0$). % For $C=0$, this family of potentials reduces to the Lenz potentials discussed in...
-
Numerical Characterization of Thresholds for the Focusing 1d Nonlinear Schrödinger Equation
PublicationThe focusing nonlinear Schrödinger equation arises in various physical phenomena and it is therefore of interest to determine mathematical conditions on the initial data that guarantee whether the corresponding solution will blow up in finite time or exist globally in time. We focus on solutions to the mass‐supercritical nonlinear Schrödinger equation (1) in 1D case. In particular, we investigate numerical thresholds between blow...
-
A Goal-Oriented Error Estimator for Reduced Basis Method Modeling of Microwave Devices
PublicationThis letter proposes a novel a-posteriori error estimator suitable for the reduced order modeling of microwave circuits. Unlike the existing error estimators based on impedance function residuals, the new one exploits the residual error associated with the computation of the scattering matrix. The estimator can be effectively used in the Reduced Basis Method (RBM) to automatically generate reduced-order models. The results of numerical...
-
Nano-structured Pt embedded in the acidic salts of heteropolymolybdate matrices: MS XAFS study
PublicationMultiple-scattering extended X-ray absorption fine structure (MS EXAFS) study combined with TEM and XRD analysis of a novel Pt-based catalyst operating at low temperature fuel cells (FCs) is presented. Innovation in the case of the considered catalyst resides in the use of a porous inorganic matrix of acidic heteropolymolybdate salts as a catalyst support. Obtained results show the relation between the matrix composition and the...
-
A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel
PublicationWide-sense stationary and uncorrelated scattering (WSSUS) assumptions are often applied for the statistical description of wireless communication channels. However, in the case of underwater acoustic channels the WSSUS model is of limited value. The degree of similarity of in-phase and quadrature components of the channel impulse response, measured with the use of bandpass modulated signals, can be used as an indicator of WSSUS...
-
Analysis of Corrugated Coaxial Line with the Use of Body of Revolution and Finite Element Method
PublicationA combination of the body-of-revolution and finite element methods is utilized to the analysis of coaxial lines with corrugated rod and wall. Both periodic and non-periodic structures can be investigated. As the structure is axially symmetrical the two dimensional scalar-vector finite element method can be used, which allows for the investigation of complex geometries and is computationally efficient. A generalized impedance matrix...
-
Design of Microwave Lossy Filter Based on Substrate Integrated Waveguide (SIW)
PublicationIn this letter, we propose a lossy three-pole Chebyshev filter centered at 5.15 GHz, based on the substrate integrated waveguide (SIW) with scattering characteristics shifted down by 5.68 dB. The filter is composed of three directly coupled SIW cavities with three lossy couplings between nonadjacent resonators. These additional couplings are realized using mixed coupled slot and microstrip lines connected with metal electrode leadless...
-
Low-energy positron scattering from gas-phase uracil
PublicationQuantum scattering calculations are presented for the interaction of low energy positrons with the uracil molecule, an important component of biological systems. The rotational elastic and inelastic cross sections and vibrational inelastic cross sections are reported and compared with existing experiments, indicating a general trend of the cross sections different from the experimental findings and in line with what should be expected...
-
Raman spectroscopic investigation of blood and related materials
PublicationThis paper reports preliminary studies on use of Raman spectroscopy for investigation of blood. High quality blood spectra were recorded in-vitro with excitation wavelengths of 830 nm. Because of complex composition of the blood as well as by light attenuation and scattering in the tissues, spectra set up from wide, low-intensive Raman bands and intensive optical background. To get information about origin of bands in Raman spectra...
-
Efficient Finite Element Analysis of Axially Symmetrical Waveguides and Waveguide Discontinuities
PublicationA combination of the body-of-revolution and finite element methods is adopted for full-wave analysis of waveguides and waveguide discontinuities involving angular field variation. Such an approach is highly efficient and much more flexible than analytical techniques. The method is performed in two different cases: utilizing a generalized impedance matrix to determine the scattering parameters of a single waveguide section and utilizing...
-
Vibrational excitation of acetylene by positron impact
PublicationVibrationally inelastic quantum calculations are carried out at low collision energies for the scattering of a beam of positrons off acetylene gaseous molecules. The normal mode analysis is assumed to be valid and the relative fluxes into the C–C and C–H symmetric vibrational modes are computed within a Body-Fixed (BF) formulation of the dynamics by solving the relevant vibrational Coupled Channels (VCC) equations. The clear dominance...