Search results for: FIBRE-OPTIC, SENSORS, INTERFEROMETRY, FABRY–PÉROT INTERFEROMETER
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.1
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Testing of the longest span soil-steel bridge in Europe – new quality in measurements
PublicationThe article describes interdisciplinary and comprehensive diagnostic tests of final bridge inspection and acceptance proposed for a soil – steel bridge made of corrugated sheets, being the European span length record holder (25.74 m). As an effect of an original concept a detailed and precise information about the structure response was collected. The load test design was based on the nonlinear numerical simulations performed by...
-
Optical-Fiber Microsphere-Based Temperature Sensors with ZnO ALD Coating—Comparative Study
PublicationThis study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublicationFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Computer Support of Analysis of Optical Spectra Measurements
PublicationThe verification of measurement errors has a big impact on the assessment of the accuracy of conducted measurements and obtained results. In many cases, computer simulation results are compared with measurement results in order to evaluate measurement errors. The purpose of our research was to check the accuracy of measurements made with a Fabry–Perot interferometer working in the transmission mode. In the measurement setup, a...
-
Computer support of analysis optical spectra measurements
PublicationVerification of measurement errors has a big impact on assessment of accuracy of conducted measurements and obtained results. In many cases computer simulation results are compared with measurement results in order to evaluate measurement errors. The purpose of our research was to check the accuracy of measurements made with Fabry-Perot interferometer working in the transmission mode. In measurement setup, a 1310 nm superluminescent...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.4
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.5
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.3
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Investigation of the Few‐Layer Black Phosphorus Degradation by the Photonic Measurements
PublicationFew-layer black phosphorus (FLBP) is a 2D material that gains worldwide interest for its possible applications, mainly in electronics and optoelec-tronics. However, as FLBP is prone to a degradation process under envi-ronmental conditions, there is a need for a monitoring method allowing investigation of its surface quality. Among many techniques, optoelectronic ones have unique advantages of fast response, non-contact, and non-invasive...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding
PublicationIn this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were...
-
Optical profilometer
PublicationThe profilometry plays a huge role in the most fields of science and technology. It allows to measure the profile of the surface with high-resolution. This technique is used in the fields like optic, electronic, medicine, automotive, and much more. The aim of the current work was to design and build optical profilometer based on the interference phenomena. The developed device has been working with He-Ne laser (632.8 nm). The optical...
-
Tuning of the finesse coefficient of optoelectronic devices
PublicationOptoelectronic devices attracted considerable attention in many branches of science and technology, which can be attributed to their unique properties. Many of them use optical cavities which parameters can be adopted to specific requirements. This thesis investigates the introduction of diamond structures (nitrogen-doped diamond film, boron-doped diamond film, undoped diamond sheet) to optical cavities to tune their finesse coefficient....
-
Refractive index measurement in the range of 1.3 – 1.5 for 1550 nm wavelength (2nd serie)
Open Research DataThe low-coherence refractive index measurements of certified liquid samples provided by Cargille Labs were performed. The measurement system consisted of a broadband light source (central wavelength of 1550 nm), an optical spectrum analyzer, a 2x1 fiber-optic coupler (50:50 power split), and single-mode telecommunication optical fibers. A micromechanical...
-
Refractive index measurement in the range of 1.3 – 1.5 for 1550 nm wavelength (1st serie)
Open Research DataThe low-coherence refractive index measurements of certified liquid samples provided by Cargille Labs were performed. The measurement system consisted of a broadband light source (central wavelength of 1550 nm), an optical spectrum analyzer, a 2x1 fiber-optic coupler (50:50 power split), and single-mode telecommunication optical fibers. A micromechanical...
-
Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer
PublicationNucleation and growth processes of thin diamond films on fused silica optical fibres have been investigated. Fibres were coated with diamond film using microwave plasma enhanced chemical vapour deposition (µPE CVD) system. Since the growth of diamond on the fused silica glass requires high seeding density, two types of glass pre-treatment were applied: titanium dioxide (TiO2) interlayer deposition and sonication in nanodiamond...
-
Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study
PublicationThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups...
-
Screw displacement pile shaft deformations measured by vibrating wire and fiber optic systems during a static load test
PublicationThis paper describes a full scale static load test performed on a 400 mm diameter screw displacement pile equipped with four different strain measuring systems. Three types of vibrating wire strain gauges (VWSG) were used: global - retrievable, local attached to steel pipe and local concrete embedded. The fourth system was distributed fiber optic sensors based on Rayleigh back scattering (DFOS) - three in the pile cross section....
-
Optical properties of thin TiO2 film deposited on the fiber optic sensor head
PublicationThe presented study was focused on investigation of the titanium dioxide (TiO2) thin film deposited on the fiber tip. The intention of this investigation was using TiO2 film in the construction of the optical fiber sensor head. In the demonstrated construction TiO2 thin layer was deposited on the tip of a commonly used telecommunication single mode optical fiber (SMF-28) by means of the Atomic Layer Deposition (ALD). Thickness...
-
Adam Władziński
PeopleAdam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...
-
Sensors for Rapid Detection of Environmental Toxicity in Blood of Poisoned People
PublicationRecently, the diagnosis and treatment of poisoned person can be done only in specialized centers. Furthermore, currently used clinical methods of intoxication diagnosis are not sufficient for early detection. Conventional laboratory tests based on urine and blood require professional, high skilled staff, high cost equipment as well as they are arduous and lasting analytical procedures. There is a need to elaborate relatively cheap...