Search results for: MOLECULAR DYNAMICS,OSMOLITY,PROTEIN FOLDING,ZWIJANIE BIAŁEK,OSMOLYTES
-
Investigation of Protein Folding by Coarse-Grained Molecular Dynamics with the UNRES Force Field
Publication -
Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies
PublicationInteractions between osmolytes and hen egg white lysozyme in aqueous solutions were studied by means of FTIR spectroscopy and molecular dynamics. A combination of difference spectra method and chemometric analysis of spectroscopic data was used to determine the number of osmolyte molecules interacting with the protein, and the preferential interaction coefficient in presented systems. Both osmolytes – L-proline and trimethylamine-N-oxide...
-
Protein thermal stabilization in aqueous solutions of osmolytes
PublicationProteins’ thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared...
-
Influence of Osmolytes on Protein and Water Structure: A Step To Understanding the Mechanism of Protein Stabilization
PublicationResults concerning the thermostability of hen egg white lysozyme in aqueous solutions with stabilizing osmolytes, trimethylamine-N-oxide (TMAO), glycine (Gly), and its N-methyl derivatives, N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (betaine, TMG), have been presented. The combination of spectroscopic (IR) and calorimetric (DSC) data allowed us to establish a link between osmolytes’ influence on...
-
General Mechanism of Osmolytes’ Influence on Protein Stability Irrespective of the Type of Osmolyte Cosolvent
PublicationThe stability of proteins in an aqueous solution can be modified by the presence of osmolytes. The hydration sphere of stabilizing osmolytes is strikingly similar to the enhanced hydration sphere of a protein. This similarity leads to an increase in the protein stability. Moreover, the hydration sphere of destabilizing osmolytes is significantly different. These solutes generate in their surroundings so-called “structurally different...
-
Structural and dynamic insights on the EmrE protein with TPP+ and related substrates through molecular dynamics simulations
PublicationEmrE is a bacterial transporter protein that forms an anti-parallel homodimer with four transmembrane helices in each monomer. EmrE transports positively charged aromatic compounds, such as TPP+ and its derivatives. We performed molecular dynamics (MD) simulations of EmrE in complex with TPP+, MeTPP+, and MBTPP+ embedded in a membrane. The detailed molecular properties and interactions were analysed for all EmrE-ligand complexes....
-
Molecular basis of the osmolyte effect on protein stability: a lesson from the mechanical unfolding of lysozyme
PublicationOsmolytes are a class of small organic molecules that shift the protein folding equilibrium. For this reason, they are accumulated by organisms under environmental stress, and find applications in biotechnology where proteins need to be stabilized or dissolved. However, despite years of research, debate continues over the exact mechanisms underpinning the stabilizing and denaturing effect of osmolytes. Here, we simulated the mechanical...
-
The Protein Folding Problem
Publication -
Structural and dynamic changes adopted by EmrE, multidrug transporter protein—Studies by molecular dynamics simulation
PublicationEmrE protein transports positively charged aromatic drugs (xenobiotics) in exchange for two protons and thus provides bacteria resistance to variety of drugs. In order to understand how this protein may recognize ligands, the monomer and asymmetric apo-form of the EmrE dimer embedded in a heterogeneous phospholipid (POPE + POPG) membrane were studied by molecular dynamics simulations. Dimer is regarded as a functional form of the...
-
Fatty acyl benzamido antibacterials based on inhibition of DnaK-catalyzed protein folding
PublicationWe have reported that the hsp70 chaperone DnaK from Escherichia coli might assist protein folding by catalyzing the cis/trans isomerization of secondary amide peptide bonds in unfolded or partially folded proteins. In this study a series of fatty acylated benzamido inhibitors of the cis/trans isomerase activity of DnaK was developed and tested for antibacterial effects in E. coli MC4100 cells. Nα-[Tetradecanoyl-(4-aminomethylbenzoyl)]-l-asparagine...
-
Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli
PublicationDr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond...
-
[NCh-bio] Advances in Biotechnology: Protein Folding and Assembly
e-Learning Courses{mlang pl} Dyscyplina: nauki chemiczne Zajęcia obowiązkowe dla doktorantów I i II roku z obszaru biotechnologii Prowadzący: dr hab. Gracjana Klein-Raina, prof. PG Liczba godzin: 15 Forma zajęć: wykład {mlang} {mlang en} Discipline: chemical sciences Obligatory course for 1st and 2nd-year PhD students from biotechnology area Academic teachers: dr hab. Gracjana Klein-Raina, prof. PG Total hours of training: 15 teaching...
-
Silica In Silico: A Molecular Dynamics Characterization of the Early Stages of Protein Embedding for Atom Probe Tomography
PublicationA novel procedure for the application of atom probe tomography (APT) to the structural analysis of biological systems, has been recently proposed, whereby the specimen is embedded by a silica matrix and ablated by a pulsed laser source. Such a technique, requires that the silica primer be properly inert and bio-compatible, keeping the native structural features of the system at hand, while condensing into an amorphous, glass-like...
-
Organic solvents aggregating and shaping structural folding of protein, a case study of the protease enzyme
PublicationLow solubility of reactants or products in aqueous solutions can result in the enzymatic catalytic reactions that can occur in non-aqueous solutions. In current study we investigated aqueous solutions containing different organic solvents / deep eutectic solvents (DESs) that can influence the protease enzyme's activity, structural, and thermal stabilities. Retroviral aspartic protease enzyme is responsible for the cleavage of the...
-
The importance of the shape of the protein-water interface of a kinesin motor domain for dynamics of the surface atoms of the protein
PublicationSingle kinesin motor domain immersed in water has been investigated using molecular dynamics. It has been found that local properties of water in solvation shell change along with the nature of neighboring protein surface. However, a detailed analysis leads to the conclusion that the geometrical features of hydrogen bonds and overall structure of kinesin hydration water is not very different from bulk water. The local values of...
-
The importance of the shape of the protein–water interface of a kinesin motor domain for dynamics of the surface atoms of the protein
PublicationA single kinesin motor domain immersed in water has been investigated using molecular dynamics. It has been found that local properties of water in the solvation shell change along with the nature of the neighboring protein surface. However, a detailed analysis leads to the conclusion that the geometrical features of hydrogen bonds and overall structure of kinesin hydration water are not very different from bulk water. The local...
-
Formation of Protein Networks between Mucins: Molecular Dynamics Study Based on the Interaction Energy of the System
PublicationMolecular dynamics simulations have been performed for a model aqueous solution of mucin. As mucin is a central part of lubricin, a key component of synovial fluid, we investigate its ability to form cross-linked networks. Such network formation could be of major importance for the viscoelastic properties of the soft-matter system and crucial for understanding the lubrication mechanism in articular cartilage. Thus,the inter- and...
-
Explicit solvent repulsive scaling replica exchange molecular dynamics ( RS‐REMD ) in molecular modeling of protein‐glycosaminoglycan complexes
PublicationGlycosaminoglcyans (GAGs), linear anionic periodic polysaccharides, are crucial for many biologically relevant functions in the extracellular matrix. By interacting with proteins GAGs mediate processes such as cancer development, cell proliferation and the onset of neurodegenerative diseases. Despite this eminent importance of GAGs, they still represent a limited focus for the computational community in comparison to other classes...
-
Molecular targets for antifungals in amino acid and protein biosynthetic pathways
PublicationFungi cause death of over 1.5 million people every year, while cutaneous mycoses are among the most common infections in the world. Mycoses vary greatly in severity, there are long-term skin (ringworm), nail or hair infections (tinea capitis), recurrent like vaginal candidiasis or severe, life-threatening systemic, multiorgan infections. In the last few years, increasing importance is attached to the health and economic problems...
-
Effect of osmolytes on the thermal stability of proteins: replica exchange simulations of Trp-cage in urea and betaine solutions
PublicationAlthough osmolytes are known to modulate the folding equilibrium, the molecular mechanism of their effect on thermal denaturation of proteins is still poorly understood. Here, we simulated the thermal denaturation of a small model protein (Trp-cage) in the presence of denaturing (urea) and stabilizing (betaine) osmolytes, using the all-atom replica exchange molecular dynamics simulations. We found that urea destabilizes Trp-cage...
-
Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: Molecular dynamics study of a pair of methane molecules in water at various temperatures
Publication -
Molecular dynamics studies of polyurethane nanocomposite hydrogels
PublicationPolyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite R 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means...
-
The protein folding problem: global optimization of force fields
Publication -
AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS
Journals -
Molecular dynamics insights into protein‐glycosaminoglycan systems from microsecond‐scale simulations
Publication -
Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides
PublicationShelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate...
-
Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe test the potentials available for elemental carbon, with the scope to choose the potential suitable for the modeling of penta-graphene, the latest two dimensional carbon allotrope. By using molecular statics and molecular dynamics simulations we show that there is only one potential e namely the Tersoff-type potential proposed by Erhart and Albe in 2005 e which is able to correctly describe all the important features of penta-graphene....
-
Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations
PublicationThis work presents the analysis of the conformation of albumin in the temperature range of 300K – 312K, i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We analyze the global dynamic properties of albumin treated as a chain. In this range of temperature, we study parameters of the molecule and the conformational entropy derived from...
-
Molecular dynamics simulations of the growth of poly (chloro-para-xylylene) films.
PublicationParylene C, poly(chloro-para-xylylene) is the most widely used member of the parylene family due to its excellent chemical and physical properties. In this work we analyzed the formation of the parylene C film using molecular mechanics and molecular dynamics methods. A five unit chain is necessary to create a stable hydrophobic cluster and to adhere to a covered surface. Two scenarios were deemed to take place. The obtained results...
-
Molecular dynamics and verisimilitude - to what extent can one trust a computational simulation?
PublicationFor the last several tens of years, computer simulations have become of undeniable importance. Molecular Dynamics (MD) simulation techniques are used to examine the phenomena which occur at the level that cannot be observed directly. Thus, they can be successfully exploited in many different scientific fields such as: materials science, applied mathematics and theoretical physics, biochemistry, biophysics or drug design. Despite...
-
Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics
PublicationThe lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin...
-
Structure determination of UL49.5 transmembrane protein from bovine herpesvirus 1 by NMR spectroscopy and molecular dynamics
Publication -
Molecular Dynamics simulations of thermal conductivity of penta-graphene
PublicationThe thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for...
-
Multi-GPU-powered UNRES package for physics-based coarse-grained simulations of structure, dynamics, and thermodynamics of protein systems at biological size- and timescales
PublicationCoarse-grained models are nowadays extensively used in biomolecular simulations owing to the tremendous extension of size- and time-scale of simulations. The physics-based UNRES (UNited RESidue) model of proteins developed in our laboratory has only two interaction sites per amino-acid residue (united peptide groups and united side chains) and implicit solvent. However, owing to rigorous physics-based derivation, which enabled...
-
Specific Binding of Cholesterol to the Amyloid Precursor Protein: Structure of the Complex and Driving Forces Characterized in Molecular Detail
PublicationC99 is the C-terminal membrane-bound fragment of the amyloid precursor protein that is cleaved by γ-secretase to release Aβ peptides, the hallmark of Alzheimer’s disease (AD). Specific interactions of C99 with cholesterol have been proposed to underlie the recognized role of cholesterol in promoting amyloidogenesis. By using molecular dynamics simulations, we studied cholesterol binding to C99 in a lipid bilayer. We determined...
-
Structure of liquid gold from tight-binding driven molecular-dynamics
PublicationPraca przedstawia wyniki symulacji ciekłego złota w nadkomórce periodycznej przy użyciu stworzonego przez autorów programu komputerowego, za pomocą połączonych metod dynamiki molekularnej (MD) i ciasnego wiązania (TB). Omówiono strukturę tak symulowanej cieczy, porównując ją z dostępnymi danymi doświadczalnymi oraz wynikami innych symulacji, pod kątem radialnej i kątowej funkcji rozkładu i elektronowej gęstości stanów.A tight-binding...
-
Identification of 1H‐indene‐(1, 3, 5, 6)‐tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach
PublicationPancreatic lipase is a potential therapeutic target to treat diet-induced obesity in humans, as obesity-related diseases continue to be a global problem. Despite intensive research on finding potential inhibitors, very few compounds have been introduced to clinical studies. In this work, new chemical scaffold 1H-indene-(1,3,5,6)-tetrol was proposed using knowledge-based approach, and 36 inhibitors were derived by modifying its...
-
Hydration of amino acids: FTIR spectra and molecular dynamics studies
PublicationThe hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results,...
-
Molecular Dynamics to Predict Cryo-EM: Capturing Transitions and Short-Lived Conformational States of Biomolecules
PublicationSingle-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of the structural biology, providing an access to the atomic resolution structures of large biomolecular complexes in their near-native environment. Today’s cryo-EM maps can frequently reach the atomic-level resolution, while often containing a range of resolutions, with conformationally variable regions obtained at 6 Å or worse. Low resolution...
-
Anion–water interactions of weakly hydrated anions: molecular dynamics simulations of aqueous NaBF4 and NaPF6
PublicationIn aqueous ionic solutions, both the structure and the dynamics of water are altered dramatically with respect to the pure solvent. The emergence of novel experimental techniques makes these changes accessible to detailed investigations. At the same time, computational studies deliver unique possibilities for the interpretation of the experimental data at the molecular level. Here, using molecular dynamics simulations, we demonstrate...
-
Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory
PublicationIterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using...
-
Solvent Exchange around Aqueous Zn(II) from Ab Initio Molecular Dynamics Simulations
PublicationHydrated zinc(II) cations, due to their importance in biological systems, are the subject of ongoing research concerning their hydration shell structure and dynamics. Here, ab initio molecular dynamics (AIMD) simulations are used to study solvent exchange events around aqueous Zn2+, for which observation in detail is possible owing to the considerable length of the generated trajectory. While the hexacoordinated Zn(H2O)62+ is the...
-
Towards Temperature Dependent Coarse-grained Potential of Side-chain Interactions for Protein Folding Simulations
Publication -
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublicationFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
The investigation of the effects of counterions in protein dynamics simulations
Publication -
Molecular Dynamics Studies on Amyloidogenic Proteins
Publication -
Molecular Dynamics Studies on Amyloidogenic Proteins
Publication -
Free volume in physical absorption of carbon dioxide in ionic liquids: Molecular dynamics supported modeling
PublicationUnderstanding the mechanisms underlying the carbon dioxide (CO2) absorption in ionic liquids (ILs) is the key to their efficient utilization in industrial flue gas treatment. One of the parameters considered substantially important in the process is the Free Volume. In this study, the Fractional Free Volume (FFV) of 73 ILs was calculated using Molecular Dynamics (MD). A quantitative Structure-Property Relationship (QSPR) study...
-
Structure of the interlayer between Au thin film and Si-substrate: Molecular Dynamics simulations
PublicationInteraction between 2, 3, 5 and 7 atomic layers of gold and a (111) silicon surface was investigated with the molecular dynamics simulation method. The simulation of the diffusion interaction between gold and silicon in the temperature range 425-925 K has been carried out. The peculiarities of the concentration changes of the interacting components and the atomic density at the boundary...
-
Implementation of Molecular Dynamics and Its Extensions with the Coarse-Grained UNRES Force Field on Massively Parallel Systems: Toward Millisecond-Scale Simulations of Protein Structure, Dynamics, and Thermodynamics
Publication