Filters
total: 43
Search results for: POLYMER DERIVED CERAMICS (PDCS)
-
Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics
PublicationW pracy przedstawiono materiał ceramiczny, bogaty w węgiel krzemo azotek węgla (SiCN), otrzymany na drodze pirolizy w zakresie temperatur od 1100 do 1700°C. Badania elektrochemiczne insercji litu wykazały, że materiał elektrodowy na bazie SiCN może być obiecujący jako anoda w bateriach litowych. Próbka otrzymana w 1300°C cechuje się pojemnością 392 mAh/g i jest stabilna aktywna elektrochemicznie w trakcie interkalacji i deinterkalacji...
-
Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics
Publication -
Silicon Oxycarbide (SiOC) Ceramic Materials as Anodes for Lithium Ion Batteries
PublicationPolymer derived ceramics (PDCs) have attracted attention as alternative anode material for Li-ion batteries. It has been found that ternary SiOC and SiCN ceramics obtained through pyrolysis of various preceramic polymers display high reversible capacities of 500 – 650 mAh/g. In this work we try to correlate the electrochemical performance of polymer derived silicon oxycarbide with its chemical composition and microstructural features....
-
Balanand Santhosh Ph.D.
PeopleDr. Balanand Santhosh, obtained his Ph.D. (cum laude) in Materials, Mechatronics and Systems engineering from the Department of Industrial Engineering, University of Trento, Italy. He is currently working as Research Assistant Professor at Gdansk Univerity of Technology, Poland. Formerly he was working as a post-doctoral researcher at University of Trento, Italy. His research expertise is mainly in the area of ceramic processing...
-
Composite Materials Based on Polymer-Derived SiCN Ceramic and Disordered Hard Carbons as Anodes for Lithium-Ion Batteries
PublicationNew composite materials based on polymer-derived SiCN ceramics and hard carbons were studied in view of its application as anodes for lithium-ion batteries. Two kinds of composites were prepared by pyrolysis of the preceramic polysilazane (HTT1800, Clariant) at 1000 °C in Ar atmosphere mixed with hard carbons derived from potato starch (HC_PS) or with a hard carbon precursor, namely potato starch (PS), denoted as HTT/HC_PS and...
-
Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes
PublicationPolymer derived carbon-rich SiOC ceramics are prepared from polysiloxane precursors through a pyrolysis process at 1000 °C using pure argon and argon/hydrogen mixture as pyrolysis atmosphere. The precursor is synthesized from a linear (Si–H)-containing polysiloxane cross-linked with divinylbenzene using hydrosilylation reaction in the presence of a platinum catalyst. Pyrolysis in Ar/H2 mixtures, compared to the treatment under...
-
Polymer derived SiOC/Sn nanocomposites from a low-cost single source precursor as anode materials for lithium storage applications
PublicationMetal- based materials capable of lithium (Li) alloy formation are key to realization of the next generation of high-energy density anodes for Li-ion batteries, owing to their high storage capacity. Designing a good sup- porting matrix is essential for homogeneously nesting these metallic nanodomains, to effectively utilize their high capacity while tackling the volume expansion issues. Silicon oxycarbides (SiOC), obtained via...
-
Impact of blending with polystyrene on the microstructural and electrochemical properties of SiOC ceramic
PublicationIn this work, we present the electrochemical behavior and microstructural analysis of silicon oxycarbide (SiOC) ceramics influenced by an addition of polystyrene (PS). Polymer-derived ceramics were obtained by pyrolysis (1000°C, Ar atmosphere) of different polysiloxanes prepared by sol–gel synthesis. This method is very effective to obtain desired composition of final ceramic. Two alkoxysilanes phenylthriethoxysilane and diphenyldimethoxysilane...
-
Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries
PublicationPolymer derived silicon oxycarbide (SiOC) ceramics are investigated as potential anodes for lithiumion batteries. Different SiOC ceramics are prepared by pyrolysis (1000 °C and 1400 °C under controlled argon atmosphere) of polysiloxanes ceramic precursors. Preceramic polymers are synthesized using the sol–gel method. Phenyltriethoxysilane (PhTES) and methyltriethoxysilane (MTES) have been used as starting precursors and mixed with...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
Modulation of dielectric properties in low-loss polypropylene-based composites at GHz frequencies: theory and experiment
PublicationPolymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide ( TiO2) with different concentrations. The key observation...
-
Dielectric Properties of BiNbO<sub>4</sub>-Based Ceramic-Polymer Composites with 0-3 Connectivity
PublicationIn the present study two-phase BiNbO4//PVDF composites with 0-3 connectivity were studied by impedance spectroscopy within the frequency range Δν=100Hz-1MHz at room temperature. Polyvinylidene fluoride (PVDF) acted as a matrix whereas bismuth niobate (BiNbO4) powder acted as a dispersed phase. The volume fraction of the ceramic phase was cV=2, 4, 6, 8, 10, 16 and 20vol%. Analysis of the impedance data registered for composites...
-
Electrochemical Characterization of Gelatine Derived Ceramics
PublicationNew materials obtained by pyrolysis of gelatine (G) and poly(1,2-dimethylsilazane) (PSN) (weight ratio: G/PSN 70/30) at temperatures 700 and 900 °C were characterized by SEM and Raman spectroscopy. The presence of ceramics influences on the cluster size of the materials. Electrochemical tests were performed by cyclic voltammetry and galvanostatic cyclic polarization. The capacity of G/PSN was 464 and 527 mAh/g for materials pyrolysed...
-
The electrochemical impedance spectroscopy studies of the anode material based on polymer and starch derived ceramic for lithium ion batteries
PublicationThe anode materials derived of preceramic polymer poly(1,2-dimethylsilazane) (PSN) and starch was study. Commercially available polysilazane (poly(1,2-dimethylsilazane (PSN 2M01 Gelest) was mixed with commercially available starch (POCH Gliwice). The ratio polymer/starch (PSN/starch) was 1/1 or 3/7. The polysialazane/starch blend was cross-linked at 230 ºC for 2 h followed by heating to the final temperature (500 ºC, 700 ºC and...
-
Recent Progress in Polymer Waste-Derived Porous Carbon for Supercapacitors
Publication -
Thermal properties of dense polymer-derived SiCN(O) glasses
Publication -
Processing and thermal characterization of polymer derived SiCN(O) and SiOC reticulated foams
Publication -
Ru/Al2O3 on Polymer-Derived SiC Foams as Structured Catalysts for CO2 Methanation
Publication -
Polymer-derived Si3N4 nanofelts as a novel oil spills clean-up architecture
Publication -
Processing of polymer‐derived, aerogel‐filled, SiC foams for high‐temperature insulation
Publication -
Influence of free carbon on the Young's modulus and hardness of polymer‐derived silicon oxycarbide glasses
Publication -
Determination of the Diffusion Coefficient of Lithium Ions in Graphite Coated with Polymer-Derived SiCN Ceramic
PublicationPraca dotyczy wyznaczenia wsółczynnik adyfuzji jonów litu w materiale elektrodowym składającym się z grafitu pokrytego materiałem ceramicznym krzemo-azotkiem węgla (SiCN). Wartość współczynnika dyfuzji zmierzono elektrochemicznie technikami: woltamperometrii cyklicznej (CV), elektrochemicznej spektrodkopii impedancyjnej (EIS) oraz miareczkowania galwanostatycznego (GITT). Materiał otrzymano na drodze pirolizy mieszaniny grafit:polimer...
-
Determination of Chemical Diffusion Coefficient of Lithium Ions in Ceramics Derived from Pyrolysed Poly(1,2-dimethylsilazane) and Starch
PublicationThe apparent chemical diffusion coefficient Li+ (DappLI+) in pyrolysed poly(1,2-dimethylsilazane)/starch (PSN/S) (weight ratio: 30/70) ceramic anode composite is determined by galvanostatic intermittent titration technique (GITT). The electrode material composition is C6.00N0.14H0.47O0.12Si0.13. The calculated values of DappLI+, depend on the applied potential, vary from 10-14 to 10-9 [cm2/s]. The diffusion coefficient of lithium...
-
Novel porous carbon/clay nanocomposites derived from kaolinite/resorcinol-formaldehyde polymer blends: synthesis, structure and sorption properties
Publication -
MAX phase ternary carbide derived 2-D ceramic nanostructures [CDCN] as chemically interactive functional fillers for damage tolerant epoxy polymer nanocomposites
Publication -
Polyurethane glycolysate from industrial waste recycling to develop low dielectric constant, thermally stable materials suitable for the electronics
PublicationWe are utilizing a new method to improve the dielectric properties of a conventional polymer using a recycled polymer product. The polyurethane foams are recycled by glycolysis process and the derived material was applied to improve the dielectric properties of the brittle DGEBA epoxy resin. Two main parameters that determine the applicability of the material as a dielectric (the dielectric constant and dielectric loss), were studied...
-
Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries
PublicationIn this work, we report an innovative and facile UV light-assisted synthesis of a nanocomposite based on silicon oxycarbide (SiOC) and tin nanoparticles. SiOC ceramic matrix, containing a conductive free carbon phase, participates in lithium-ion storage, and buffers the volume changes of Li-alloying/de-alloying material. The reported synthesis procedure through a polymer-derived ceramic route involves the preparation of a single-source...
-
Progress in ATRP-derived materials for biomedical applications
PublicationThe continuing wave of technological breakthroughs and advances is critical for engineering well- defined materials, particularly biomaterials, with tailored microstructure and properties. Over the last few decades, controlled radical polymerization (CRP) has become a very promising option for the synthesis of precise polymeric materials with an unprecedented degree of control over mo lecular architecture. Atom transfer radical...
-
Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr1–x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2−δ Ceramics
PublicationCompositionally complex oxides (CCOs) or high-entropy oxides (HEOs) are new multi-element oxides with unexplored physical and functional properties. In this work, we report fluorite structure derived compositionally complex zirconia with composition Zr1- x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2-δ (x = 0.1 and 0.2) synthesized in solid-state reaction route and sintered via hot pressing at 1350 °C. We explore the evolution of these oxides'...
-
Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices
PublicationHerein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic...
-
Structurally well-defined functionalized polyolefins and graft copolymers thereof as bitumen modifiers
PublicationHere we demonstrate the application of hydroxyl-functionalized propylene-based copolymers, poly(propylene-co-1-hexene-co-10-undecen-1-ol) (FPP) and poly(styrene-co-maleic anhydride) (SMA) graft copolymers derived thereof, poly(propylene-co-1- hexene-graft-styrene-co-maleic anhydride) (FPP-g-SMA) as bitumen modifiers. The FPP samples were synthesized via solution copolymerization, while FPP-g-SMA products were obtained via transesterification...
-
Thermomechanical and Fire Properties of Polyethylene-Composite-Filled Ammonium Polyphosphate and Inorganic Fillers: An Evaluation of Their Modification Efficiency
PublicationThe development of new polymer compositions characterized by a reduced environmental impact while lowering the price for applications in large-scale production requires the search for solutions based on the reduction in the polymer content in composites’ structure, as well as the use of fillers from sustainable sources. The study aimed to comprehensively evaluate introducing low-cost inorganic fillers, such as copper slag (CS),...
-
Reactions of cobalt(ii) chloride and cobalt(ii) acetate with hemisalen-type ligands: ligand transformation, oxidation of cobalt and complex formation. Preliminary study on the cytotoxicity of Co(ii) and Co(iii) hemisalen complexes
PublicationSeveral molecular cobalt(II) complexes, one Co(II) coordination polymer, and one ionic cobalt(III) complex with imine hemisalen ligands were synthesized. The hemisalen ligands were synthesized from o-vanillin (oVP) and diverse aminopyridines (compounds HL1–HL4) or aminophenol (compound HL5). It was observed that cobalt(II) chloride in dry acetonitrile catalyzes a transformation of HL1 and HL3 instead of complex formation. The conversion...
-
Microcrystalline Cellulose Management in the Production of Poly(ether-urethane)s- Structure, Morphology, and Thermal Characteristic
PublicationIn response to the demand of polymer industry for reducing the use of synthetic chemicals, eco-friendly materials are investigated. In the presented study, bio-based poly(ether-urethane)s were prepared by using microcrystalline cellulose (MCC) and polyether polyol and 1,3-propanediol derived from corn sugar. A step towards sustainability was taken by incorporating bio-based compounds and cellulose, consequently, bio-waste are utilized...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublicationThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
Characterization of Highly Filled Glass Fiber/Carbon Fiber Polyurethane Composites with the Addition of Bio-Polyol Obtained through Biomass Liquefaction
PublicationThis work aims to investigate the process of obtaining highly filled glass and carbon fiber composites. Composites were manufactured using previously obtained cellulose derived polyol, polymeric methylene diphenyl diisocyanate (pMDI). As a catalyst, dibutyltin dilaurate 95% and Dabco® 33-LV were used. It was found that the addition of carbon and glass fibers into the polymer matrix causes an increase in the mechanical properties...
-
New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties
PublicationIn this work, we study the impact of the preceramic precursor vinyltriethoxysilane (VTES) on the electrochemical performance of silicon oxycarbide (SiOC) glass/graphite composites. We apply an innovative approach based on high-power ultrasounds in order to obtain highly homogenous composites with a uniform distribution of small graphitic flakes. This procedure enhances gelation and drying of VTES-based preceramic polymer/graphite...
-
Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures
PublicationOrganic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2Hm/N2 (m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface...
-
Sustainable Strategy for Algae Biomass Waste Management via Development of Novel Bio-Based Thermoplastic Polyurethane Elastomers Composites
PublicationThis work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina. ABWs were used in the bio-TPUs composites as a filler in the quantity of 1, 5, 10, and 15 wt.%. The bio-based composites...
-
Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition
PublicationWound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing...
-
Hybrid electrode materials for fast performance devices
PublicationEnergy storage devices such as Electrochemical Double Layer Capacitors and other types of the electrochemical capacitors require chemically stable, non-soluble, electrochemically active electrode materials compatible with appropriate electrolytes. Factors which determine their applicability are derived from so called electrochemical window of electroltes, nature of charge accumulation and their kinetics. On the other hand technological...
-
Cellulosic bionanocomposites based on acrylonitrile butadiene rubber and Cuscuta reflexa: adjusting structure-properties balance for higher performance
PublicationDesign and manufacture of cellulosic nanocomposites with acceptable performance is in the period of a transition from fantasy to reality. Typically, cellulosic nanofillers reveal poor compatibility with polymer matrices. Thus, adjusting the balance between structure and properties of cellulosic bionanocomposites by careful selection of parent ingredients is the first priority. Herein, we incorporated Cuscuta reflexa derived cellulose...
-
Study on polymer modified road asphalt mixture
PublicationThe formulation of ternary asphalt-additives blend composed of crumb rubber : low-density polyethylene (CR : LDPE) and crumb rubber : textile fiber (CR : TF) couples, and quaternary asphalt additives-blend composed of (CR : LDPE : TF) triplets on the virgin asphalt to optimize the asphalt basic and rheological properties and to use the extrusion process of two or three additives to obtain composite materials of them, as well as...