displaying 1000 best results Help
Search results for: ROOT FINDING ALGORITHM
-
Complex Root Finding Algorithm Based on Delaunay Triangulation
PublicationA simple and flexible algorithm for finding zeros of a complex function is presented. An arbitrary-shaped search region can be considered and a very wide class of functions can be analyzed, including those containing singular points or even branch cuts. The proposed technique is based on sampling the function at nodes of a regular or a self-adaptive mesh and on the analysis of the function sign changes. As a result, a set of candidate points...
-
Efficient Complex Root Finding Algorithm for Microwave and Optical Propagation Problems
PublicationArticle relates to the use of innovative root finding algorithm (on a complex plane) to study propagation properties of microwave and optical waveguides. Problems of this type occur not only in the analysis of lossy structures, but also in the study of complex and leaky modes (radiation phenomena). The proposed algorithm is simple to implement and can be applied for functions with singularities and branch cuts in the complex plane...
-
On root finding algorithms for complex functions with branch cuts
PublicationA simple and versatile method is presented, which enhances the complex root finding process by eliminating branch cuts and branch points in the analyzed domain. For any complex function defined by a finite number of Riemann sheets, a pointwise product of all the surfaces can be obtained. Such single-valued function is free of discontinuity caused by branch cuts and branch points. The roots of the new function are the same as the...
-
Evaluation of propagation parameters of open guiding structures with the use of complex root finding algorithms
PublicationAn efficient complex root tracing algorithm is utilized for the investigation of electromagnetic wave propagation in open guiding structures. The dispersion characteristics of propagated and leaky waves are calculated for a couple of chosen waveguides. The efficiency of the root tracing algorithm is discuses and compared to a global root finding algorithm.
-
An efficient algorithm for finding ideal schedules
PublicationPodejmujemy problem szeregowania zadań jednostkowych z zadanymi czasamy przybycia i zależnościami kolejnościowymi. Uszeregowanie jest idealne jeśli jednocześnie minimalizuje maksymalny oraz średni czas zakończenia zadania. Podajemy przyklad pokazujący, że uszeregowania idealne nie istnieją dla relacji zależności zadań będącej drzewem, gdy dopuścimy możliwość wystąpienia przerwań. Z drugiej strony podajemy algorytm o złożoności...
-
A polynomial algorithm for finding T-span of generalized cacti
Publication -
A polynomial algorithm for finding T-span of generalized cacti.
PublicationW pracy opisano wielomianowy algorytm wyznaczający optymalne T-pokolorowania dla uogólnionych kaktusów.
-
Efficient Complex Root Tracing Algorithm for Propagation and Radiation Problems
PublicationAn efficient complex root tracing algorithm for propagation and radiation problems is presented. The proposed approach is based on a discretization of Cauchy’s Argument Principle and its generalization to the C × R space. Moreover, an engagement of the tracing process with a global root finding algorithm recently presented in the literature is performed. In order to confirm a validity and efficiency of the proposed technique, a...
-
An O ( n log n ) algorithm for finding edge span of cacti
PublicationLet G=(V,E) be a nonempty graph and xi be a function. In the paper we study the computational complexity of the problem of finding vertex colorings c of G such that: (1) |c(u)-c(v)|>=xi(uv) for each edge uv of E; (2) the edge span of c, i.e. max{|c(u)-c(v)|: uv belongs to E}, is minimal. We show that the problem is NP-hard for subcubic outerplanar graphs of a very simple structure (similar to cycles) and polynomially solvable for...
-
Global Complex Roots and Poles Finding Algorithm in C × R Domain
PublicationAn algorithm to find the roots and poles of a complex function depending on two arguments (one complex and one real) is proposed. Such problems are common in many fields of science for instance in electromagnetism, acoustics, stability analyses, spectroscopy, optics, and elementary particle physics. The proposed technique belongs to the class of global algorithms, gives a full picture of solutions in a fixed region ⊂ C × R and...
-
A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves
PublicationW pracy rozważa się rozproszony model obliczeń, w którym struktura systemu jest reprezentowana przez graf bezpośrednich połączeń komunikacyjnych. W tym modelu podajemy nowy samostabilizujący algorytm znajdowania drzewa spinającego. Zgodnie z naszą wiedzą jest to pierwszy algorytm dla tego problemu z gwarantowaną wielomianową liczbą ruchów.
-
Self-Adaptive Mesh Generator for Global Complex Roots and Poles Finding Algorithm
PublicationIn any global method of searching for roots and poles, increasing the number of samples increases the chances of finding them precisely in a given area. However, the global complex roots and poles finding algorithm (GRPF) (as one of the few) has direct control over the accuracy of the results. In addition, this algorithm has a simple condition for finding all roots and poles in a given area: it only requires a sufficiently dense...
-
An Improvement of Global Complex Roots and Poles Finding Algorithm for Propagation and Radiation Problems
PublicationAn improvement of the recently developed global roots finding algorithm has been proposed. The modification allows to shorten the computational time by reducing the number of function calls. Moreover, both versions of the algorithms (standard and modified) have been tested for numerically defined functions obtained from spectral domain approach and field matching method. The tests have been performed for three simple microwave...
-
A Self-Adaptive Complex Root Tracing Algorithm for the Analysis of Propagation and Radiation Problem
PublicationAn improved complex root tracing algorithm for radiation and propagation issues is proposed. The approach is based on a self-adaptive discretization of Cauchy’s argument principle for a C × R space and requires a reduced number of function calls in comparison to other procedures presented in the literature. A few different examples concerning propagation and radiation problems have been considered to verify the validity and efficiency...
-
Multi-objective electric distribution network reconfiguration solution using runner-root algorithm
Publication -
Global Complex Roots and Poles Finding Algorithm Based on Phase Analysis for Propagation and Radiation Problems
PublicationA flexible and effective algorithm for complex roots and poles finding is presented. A wide class of analytic functions can be analyzed, and any arbitrarily shaped search region can be considered. The method is very simple and intuitive. It is based on sampling a function at the nodes of a regular mesh, and on the analysis of the function phase. As a result, a set of candidate regions is created and then the roots/poles are verified...
-
Multimodal Genetic Algorithm with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublicationIn this contribution, a new genetic-algorithm-based method of finding roots and poles of a complex function of a complex variable is presented. The algorithm employs the phase analysis of the function to explore the complex plane with the use of the genetic algorithm. Hence, the candidate regions of root and pole occurrences are selected and verified with the use of discrete Cauchy's argument principle. The algorithm is evaluated...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublicationIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
Scattering and Propagation Analysis for the Multilayered Structures Based on Field Matching Technique
PublicationA semi-analytical method is employed to the analysis of scattering and guiding problems in multilayer dielectric structures. The approach allows to investigate objects with arbitrary convex cross section and is based on the direct field matching technique involving the usage of the field projection at the boundary on a fixed set of orthogonal basis functions. For the scattering problems the scattered field in the far zone is calculated...
-
A New Approach to Stability Evaluation of Digital Filters
PublicationIn this paper, a new numerical method of evaluating digital filter stability is presented. This approach is based on novel root-finding algorithms at the complex plane using the Delaunay triangulation and Cauchy's Argument Principle. The presented algorithm locates unstable zeros of the characteristic equation with their multiplicities. The proposed method is generic and can be applied to a vast range of systems. Verification of...
-
Analysis of nonlinear eigenvalue problems for guides and resonators in microwave and terahertz technology
PublicationThis dissertation presents developed numerical tools for investigating waveguides and resonators' properties for microwave and terahertz technology. The electromagnetics analysis requires solving complex eigenvalue problems, representing various parameters such as resonant frequency or propagation coefficient. Solving equations with eigenvalue boils down to finding the roots of the determinant of the matrix. At the beginning, one...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublicationIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Numerical Test for Stability Evaluation of Analog Circuits
PublicationIn this contribution, a new numerical test for the stability evaluation of analog circuits is presented. Usually, if an analog circuit is unstable then the roots of its characteristic equation are localized on the right half-plane of the Laplace s- plane. Because this region is unbounded, we employ the bilinear transformation to map it into the unit disc on the complex plane. Hence, the existence of any root inside the unit disc...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublicationA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
Analysis of graphene multi-strip planar guiding structures with the use of spectral domain approach
PublicationSpectral domain approach is modified and used to analyze some simple structures containing graphene strips. The modification is simple and concerns the Green’s function only. Moreover, the method is combined with the recently published root finding algorithms, which significantly improve the efficiency of the analysis. The results obtained for a simple guiding structure is verified and the field displacement effect is confirmed.
-
RECSYS CHALLENGE 2015: a BUY EVENT PREDICTION IN THE E-COMMERCE DOMAIN
PublicationIn this paper we present our approach to RecSys Challenge 2015. Given a set of e-commerce events, the task is to predict whether a user will buy something in the current session and, if yes, which of the item will be bought. We show that the data preparation and enrichment are very important in finding the solution for the challenge and that simple ideas and intuitions could lead to satisfactory results. We also show that simple...
-
Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
PublicationIn this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation must be within the unit circle on the complex z-plane. The obtained...
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 194
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 194, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 192
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 192, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 191
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 191, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 193
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 193, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 190
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 190, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Metody zwiększania dostępności i efektywności informatycznej infrastruktury w inteligentnym mieście
PublicationW pracy omówiono metody zwiększania dostępności i efektywności informatycznej infrastruktury w inteligentnym mieście. Sformułowano dwa kryteria do oceny rozmieszczenia kluczowych zasobów w systemie smart city. Zobrazowano proces wyznaczania rozwiązań kompromisowych spośród rozwiązań Pareto-optymalnych. Omówiono metaheurystyki inteligencji zbiorowej, w tym roju cząstek, kolonii mrówek, roju pszczół oraz ewolucji różnicowej, za pomocą...
-
Evaluating Accuracy of Respiratory Rate Estimation from Super Resolved Thermal Imagery
PublicationNon-contact estimation of Respiratory Rate (RR) has revolutionized the process of establishing the measurement by surpassing some issues related to attaching sensors to a body, e.g. epidermal stripping, skin disruption and pain. In this study, we perform further experiments with image processing-based RR estimation by using various image enhancement algorithms. Specifically, we employ Super Resolution (SR) Deep Learning (DL) network...
-
Multipath Complex Root Tracing
PublicationThe problem of multipath root tracing is being addressed in this communication. The self-adaptive complex root tracing algorithm, which was previously utilized for the investigation of various propagation and radiation problems, is analyzed here for the cases when the traced characteristic bifurcates. A procedure of multiroute detection is proposed and demonstrated on the coaxially loaded cylindrical waveguide example.
-
The Chow Ring of flag manifolds
Open Research DataSchubert calculus is the intersection theory of 19th century. Justifying this calculus is the content of the 15th problem of Hilbert. In the course to establish the foundation of algebraic geometry, Van der Vaerden and A. Weil attributed the problem to the determination of the chow ring of flag manifolds G/P, where G is a compact Lie group and P is...
-
Square root RC Nyquist filter of fractional delay
PublicationIn this paper we propose a discrete-time FIR (finite impulse response) filter which couples the role of square root Nyquist filter with fractional delay filter. This filter enables to substitute for a cascade of square root RC (SRRC) Nyquist filter and fractional delay filter in one device/algorithm. The aim is to compensate for transmission delay in communication system. Statistically defined performances, e.g. BER (bit error...
-
Plant Root
Journals -
Square Root Raised Cosine Fractionally Delaying Nyquist Filter - Design and Performance Evaluation
PublicationIn this paper we propose a discrete-time FIR (Finite Impulse Response) filter which is applied as a square root Nyquist filter and fractional delay filter simultaneously. The filter enables to substitute for a cascade of square root Nyquist filter and fractional delay filter in one device/algorithm. The aim is to compensate for transmission delay in digital communication system. Performance of the filter as a matched filter is...
-
Variational Method of Finding Streamlines in Ring Cascades for Creeping Flows
PublicationThis paper presents a new, analytical method of finding streamlinesfor creeping flows inside a ring cascade which is composed of an infinite number of infinitely thin blades. An analytical solution has been obtained through minimisation of a dissipation functional by means of variational calculus method. The necessary condition for optimum of a functional gives the Stokes equation if some additional assumptions are introduced....
-
Mersenne Number Finding and Collatz Hypothesis Verification in the Comcute Grid System
PublicationIn this chapter, some mathematic applications have been described to test scalability of the Comcute grid system. Especially, a verification of the Collatz hypothesis and finding Mersenne numbers were applied to prove the scalability and high performance of this grid system. Results were compared with outcomes obtained by the other grid systems.
-
Polynomial Algorithm for Minimal (1,2)-Dominating Set in Networks
PublicationDominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-dominating set in a graph G=(V,E) if every node not in D is adjacent to a node in D and is also at most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault tolerance and provide a higher reliability of services in case of failure. However, finding such the smallest set is NP-hard. In this paper, we...
-
Generating optimal paths in dynamic environments using RiverFormation Dynamics algorithm
PublicationThe paper presents a comparison of four optimisation algorithms implemented for the purpose of finding the shortest path in static and dynamic environments with obstacles. Two classical graph algorithms –the Dijkstra complete algorithm and A* heuristic algorithm – were compared with metaheuristic River Formation Dynamics swarm algorithm and its newly introduced modified version. Moreover, another swarm algorithm has been compared...
-
FPGA realization of an improved alpha max plus beta min algorithm
PublicationThe generalized improved version of the alpha max plus beta min square-rooting algorithm and its realization in the Field Programmable Gate Array (FPGA) are presented. The algorithm computes the square root to calculate the approximate magnitude of a complex sample. It is especially useful for pipelined calculations in the DSP. In case of four approximation regions it is possible to reduce the peak error form 3.95% to 0.33%. This...
-
Task Assignments in Logistics by Adaptive Multi-Criterion Evolutionary Algorithm with Elitist Selection
PublicationAn evolutionary algorithm with elitist selection has been developed for finding Pareto-optimal task assignments in logistics. A multi-criterion optimization problem has been formulated for finding a set of Pareto- optimal solutions. Three criteria have been applied for evaluation of task assignment: the workload of a bottleneck machine, the cost of machines, and the numerical performance of system. The machine constraints have...
-
Performance comparison of new modified gradient algorithm and Foy algorithm for iterative position calculation
PublicationIn the paper a new position calculation algorithm is presented. It is proposed for indoor environments and is called modified gradient algorithm. This algorithm is compared with well-known Foy algorithm. The comparative analysis is based on real distance measurements conducted in indoor environment.
-
Multicriteria Evolutionary Weather Routing Algorithm in Practice
PublicationThe Multicriteria Evolutionary Weather Routing Algorithm (MEWRA) has already been introduced by the author on earlier TransNav 2009 and 2011 conferences with a focus on theoretical application to a hybrid-propulsion or motor-driven ship. This paper addresses the topic of possible practical weather routing applications of MEWRA. In the paper some practical advantages of utilizing Pareto front as a result of multicriteria optimization...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublicationPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Field Cultivation and in vitro Cultures, Root-Forming Callus Cultures and Adventitious Root Cultures, of Panax quinquefolium as a Source of Ginsenosides
Publication -
Establishment of hairy root cultures of Ammi majus
Publication