Filtry
wszystkich: 252
wybranych: 241
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: VARIABLE-FIDELITY EM SIMULATIONS
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublikacjaThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Enhancing rheological muscle models with stochastic processes
PublikacjaPurpose: Biological musculoskeletal systems operate under variable conditions. Muscle stiffness, activation signals, and loads change during each movement. The presence of noise and different harmonic components in force production significantly influences the behaviour of the muscular system. Therefore, it is essential to consider these factors in numerical simulations. Methods: This study aims to develop a rheological mathematical...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublikacjaSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublikacjaMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Statistical analysis and robust design of circularly polarized antennas using sequential approximate optimization
PublikacjaIn the paper, reliable yield estimation and tolerance-aware design optimization of circular polarization (CP) antennas is discussed. We exploit auxiliary kriging interpolation models established in the vicinity of the nominal design in order to speed up the process of statistical analysis of the antenna structure at hand. Sequential approximate optimization is then applied to carry out robust design of the antenna, here, oriented...
-
Supervised-learning-based development of multi-bit RCS-reduced coding metasurfaces
PublikacjaCoding metasurfaces have been introduced as efficient tools allowing meticulous control over the electromagnetic (EM) scattering. One of their relevant application areas is radar cross section (RCS) reduction, which principally relies on the diffusion of impinging EM waves. Despite its significance, careful control of the scattering properties poses a serious challenge at the level of practical realization. This article is concerned...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublikacjaUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
A novel one-variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on Eringen’s nonlocal differential law
PublikacjaPurpose – This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets. Design/methodology/approach – The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors...
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublikacjaUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublikacjaComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
GPR simulations for diagnostics of a reinforced concrete beam
PublikacjaThe most popular technique for modelling of an electromagnetic field, the finite difference time domain (FDTD) method, has recently become a popular technique as an interpretation tool for ground penetrating radar (GPR) measurements. The aim of this study is to detect the size and the position of damage in a reinforced concrete beam using GPR maps. Numerical simulations were carried out using the finite differ-ence time domain...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublikacjaA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Frequency-Variant Double-Zero Single-Pole Reactive Coupling Networks for Coupled-Resonator Microwave Bandpass Filters
PublikacjaIn this work, a family of frequency-variant reactive coupling (FVRC) networks is introduced and discussed as new building blocks for the synthesis of coupled-resonator bandpass filters with real or complex transmission zeros (TZs). The FVRC is a type of nonideal frequency-dependent inverter that has nonzero elements on the diagonal of the impedance matrix, along with a nonlinear frequency-variation profile of its transimpedance...
-
Performance-Driven Inverse/Forward Modeling of Antennas in Variable-Thickness Domains
PublikacjaDesign of contemporary antenna systems is a challenging endeavor. The difficulties are partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities, but also constraints imposed upon the physical size of the radiators. Furthermore, conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise dictated by reliability,...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublikacjaElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
A Compact and Lightweight Microwave Tilt Sensor Based on an SRR-Loaded Microstrip Line
PublikacjaIn this paper, the symmetry property of split ring resonators (SRRs) is exploited to develop a tilt sensor. The sensor is composed of an SRR-loaded microstrip line operating at microwave frequencies. It is shown that the depth of notch in the reflection characteristic of the microstrip is a function of the tilt angle of the SRR. Thus, it can be used for sensing inclination. The sensor benefits from very compact size and light weight....
-
Fast surrogate-assisted simulation-driven design of compact microwave hybrid couplers
PublikacjaThis work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bot-tom–up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface...
-
Impact of Climate Change on Water Sources and River‐Floodplain Mixing in the Natural Wetland Floodplain of Biebrza River
PublikacjaThe origins of river and floodplain waters (groundwater, rainfall, and snowmelt) and their extent during overbank flow events strongly impact ecological processes such as denitrification and vegetation development. However, the long-term sensitivity of floodplain water signatures to climate change remains elusive. We examined how the integrated hydrological model HydroGeoSphere and the Hydraulic Mixing-Cell method could help us...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublikacjaModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublikacjaPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublikacjaAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublikacjaSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers
PublikacjaFull-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical...
-
Analysis of positioning error and its impact on high frequency properties of differential signal coupler
PublikacjaThis paper presents the analysis of the effect of differential signal coupler positioning accuracy on its high frequency performance parameters for contact-less high speed chip-to-chip data transmission on PCB application. Our considerations are continuation of the previous works on differential signal coupler concept, design methodology and analysis for high speed data transmission monitoring. The theoretical analysis of possible...
-
High-Efficacy Global Optimization of Antenna Structures by Means of Simplex-Based Predictors
PublikacjaDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the...
-
Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging
PublikacjaDesign of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations,...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublikacjaDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
On Alternative Approaches to Design of Corporate Feeds for Low-Sidelobe Microstrip Linear Arrays
PublikacjaTwo design approaches, illustrated by simulations and measurements, aiming at a systematic computer-aided design of printed circuit feeds for low-sidelobe microstrip antenna arrays are described. The novelty of these approaches resides in identification of the optimal feed architectures with subsequent simulation-based optimization of the feed and array aperture dimensions. In this work, we consider microstrip corporate feeds realizing...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublikacjaManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
A robust design of a numerically demanding compact rat-race coupler
PublikacjaA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
A framework for accelerated optimization of antennas using design database and initial parameter set estimation
PublikacjaThe purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated. Design/methodology/approach The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities....
-
Reliable Surrogate Modeling of Antenna Input Characteristics by Means of Domain Confinement and Principal Components
PublikacjaA reliable design of contemporary antenna structures necessarily involves full-wave electromagnetic (EM) analysis which is the only tool capable of accounting, for example, for element coupling or the effects of connectors. As EM simulations tend to be CPU-intensive, surrogate modeling allows for relieving the computational overhead of design tasks that require numerous analyses, for example, parametric optimization or uncertainty...
-
Accelerated Re-Design of Antenna Structures Using Sensitivity-Based Inverse Surrogates
PublikacjaThe paper proposes a novel framework for accelerated re-design (dimension scaling) of antenna structures using inverse surrogates. The major contribution of the work is a sensitivity-based model identification procedure, which permits a significant reduction of the number of reference designs required to render the surrogate. Rigorous formulation of the approach is supplemented by its comprehensive numerical validation using a...
-
Wideband Highly-Selective Bandpass Filtering Branch-Line Coupler
PublikacjaThis paper presents a novel design of a wideband highly-selective bandpass filtering branch-line coupler (FBLC). By integrating a coupled microstrip line, and an open-ended stub at each port of a single-section BLC, bandpass filtering characteristics with excellent selectivity and broad operating bandwidth have been achieved. The proposed circuit has been verified through EM simulations and physical measurements of the fabricated...
-
Analysis of Positioning Error and Its Impact on High Frequency Performance Parameters of Differential Signal Coupler of Differential Signal Coupler
PublikacjaThis paper presents the analysis of the effect of differential signal coupler positioning accuracy on its high frequency performance parameters for contact-less high speed chip-to-chip data transmission on PCB application. Our considerations are continuation of the previous works on differential signal coupler concept, design methodology and analysis for high speed data transmission monitoring presented in [1, 2]. The theoretical...
-
Modelling tunnelling-induced deformation in stiff soils with a hyperelastic–plastic anisotropic model
PublikacjaIn this paper, the tunnelling-induced deformation in anisotropic stiff soils is analysed using FE modelling. The influence of material description is investigated rather than an advanced simulation of the tunnelling method. A new hyperelastic– plastic model is proposed to describe the anisotropic mechanical behaviour of stiff highly overconsolidated soil. This model can reproduce the superposition of variable stress-induced anisotropy...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublikacjaDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
PublikacjaThe importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublikacjaData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Greedy Multipoint Model-Order Reduction Technique for Fast Computation of Scattering Parameters of Electromagnetic Systems
PublikacjaThis paper attempts to develop a new automated multipoint model-order reduction (MOR) technique, based on matching moments of the system input–output function, which would be suited for fast and accurate computation of scattering parameters for electromagnetic (EM) systems over a wide frequency band. To this end, two questions are addressed. Firstly, the cost of the wideband reduced model generation is optimized by automating a...
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublikacjaModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
Cost-Efficient Design Methodology for Compact Rat-Race Couplers
PublikacjaIn this article, a reliable and low-cost design methodology for simulation-driven optimization of miniaturized rat-race couplers (RRCs) is presented. We exploit a two-stage design approach, where a composite structure (a basic building block of the RRC structure) is first optimized using a pattern search algorithm, and, subsequently, the entire coupler is tuned by means of surrogate-based optimization (SBO) procedure. SBO is executed...
-
Resistant to correlated noise and outliers discrete identification of continuous non-linear non-stationary dynamic objects
PublikacjaIn this article, specific methods of parameter estimation were used to identify the coefficients of continuous models represented by linear and nonlinear differential equations. The necessary discrete-time approximation of the base model is achieved by appropriately tuned FIR linear integral filters. The resulting discrete descriptions, which retain the original continuous parameterization, can then be identified using the classical...
-
Two-step mechanism of J-domain action in driving Hsp70 function
PublikacjaJ-domain proteins (JDPs), obligatory Hsp70 cochaperones, play critical roles in protein homeostasis. They promote key allosteric transitions that stabilize Hsp70 interaction with substrate polypeptides upon hydrolysis of its bound ATP. Although a recent crystal structure revealed the physical mode of interaction between a J-domain and an Hsp70, the structural and dynamic consequences of J-domain action once bound and how Hsp70s...
-
Rapid design closure of microwave components by means of feature-based optimization and adjoint sensitivities
PublikacjaIn this article, fast design closure of microwave components using feature-based optimization (FBO) and adjoint sensitivities is discussed. FBO is one of the most recent optimization techniques that exploits a particular structure of the system response to “flatten” the functional landscape handled during the optimization process, which leads to reducing its computational complexity. When combined with gradient-based search involving...
-
Knowledge-based performance-driven modeling of antenna structures
PublikacjaThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Discrete identification of continuous non-linear and non-stationary dynamical systems that is insensitive to noise correlation and measurement outliers
PublikacjaThe paper uses specific parameter estimation methods to identify the coefficients of continuous-time models represented by linear and non-linear ordinary differential equations. The necessary approximation of such systems in discrete time in the form of utility models is achieved by the use of properly tuned `integrating filters' of the FIR type. The resulting discrete-time descriptions retain the original continuous parameterization...
-
Molecular mechanism and energetics of coupling between substrate binding and product release in the F 1 -ATPase catalytic cycle
PublikacjaF1-ATPase is a motor protein that couples the rotation of its rotary γ subunit with ATP synthesis or hydrolysis. Single-molecule experiments indicate that nucleotide binding and release events occur almost simultaneously during the synthesis cycle, allowing the energy gain due to spontaneous binding of ADP to one catalytic β subunit to be directly harnessed for driving the release of ATP from another rather than being dissipated...
-
Models of Brushless Synchronous Generator for Studying Autonomous Electrical Power System
PublikacjaThis is a PhD dissertation. The work presented in this monograph was carried out at the Department of Power Electronics and Electrical Machines, Faculty of Electrical and Control Engineering at the Gdansk University of Technology. Developed during the research models of brushless synchronous generator ware verified using FEM based simulations and measurements conducted on the prototype generator. The main focus of the research...