Filtry
wszystkich: 21
wybranych: 20
Filtry wybranego katalogu
Wyniki wyszukiwania dla: NONLOCALITY
-
Entanglement and Nonlocality are Inequivalent for Any Number of Parties
PublikacjaUnderstanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that these two phenomena are inequivalent, as there exist entangled states of two parties that do not violate any Bell inequality. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is known about such a relation in multipartite...
-
Inequivalence of entanglement, steering, and Bell nonlocality for general measurements
PublikacjaEinstein-Podolsky-Rosen steering is a form of inseparability in quantum theory commonly acknowledged to be intermediate between entanglement and Bell nonlocality. However, this statement has so far only been proven for a restricted class of measurements, namely, projective measurements. Here we prove that entanglement, one-way steering, two-way steering, and nonlocality are genuinely different considering general measurements,...
-
Dynamical nonlocality in quantum time via modular operators
PublikacjaWe formalize the concept of the modular energy operator within the Page and Wootters timeless framework. As a result, this operator is elevated to the same status as the more studied modular operators of position and momentum. In analogy with dynamical nonlocality in space associated with the modular momentum, we introduce and analyze the nonlocality in time associated with the modular energy operator. Some applications of our...
-
Dynamical description of quantum computing: generic nonlocality of quantumnoise
PublikacjaWe develop a dynamical non-Markovian description of quantum computing in the weak-coupling limit, in the lowest-order approximation. We show that the long-range memory of the quantum reservoir (such as the 1/t4 one exhibited by electromagnetic vacuum) produces a strong interrelation between the structure of noise and the quantum algorithm, implying nonlocal attacks of noise. This shows that the implicit assumption of quantum error...
-
Vibro-Electrical Behavior of a Viscoelastic Piezo-Nanowire in an Elastic Substrate Considering Stress Nonlocality and Microstructural Size-Dependent Effects
PublikacjaThis research deals with dynamics response of a Pol/BaTiO3 nanowire including viscosity influences. The wire is also impressed by a longitudinal electric field. Hamilton's principle and Lagrangian strains are employed in conjunction with a refined higher-order beam theory in order to derive equations of motion. By combining nonlocality and small size...
-
Extending loophole-free nonlocal correlations to arbitrarily large distances
PublikacjaQuantum theory allows spatially separated observers to share nonlocal correlations, which enable them to accomplish classically inconceivable information processing and cryptographic feats. However, the distances over which nonlocal correlations can be realized remain severely limited due to their high fragility to noise and high threshold detection efficiencies. To enable loophole- free nonlocality across large distances, we introduce...
-
Constructing genuinely entangled multipartite states with applications to local hidden variables and local hidden states models
PublikacjaBuilding upon the results of R. Augusiak et al. [Phys. Rev. Lett. 115, 030404 (2015)] we develop a general approach to the generation of genuinely entangled multipartite states of any number of parties from genuinely entangled states of a fixed number of parties, in particular, the bipartite entangled ones. In our approach, certain isometries whose output subspaces are either symmetric or genuinely entangled in some multipartite...
-
Quantum metrology: Heisenberg limit with bound entanglement
PublikacjaQuantum entanglement may provide a huge boost in the precision of parameter estimation. However, quantum metrology seems to be extremely sensitive to noise in the probe state. There is an important still open question: What type of entanglement is useful as a resource in quantum metrology? Here we raise this question in relation to entanglement distillation. We provide a counterintuitive example of a family of bound entangled states...
-
Thermodynamical approach to quantifying quantum correlations
PublikacjaWe consider the amount of work which can be extracted from a heat bath using a bipartite state ρ shared by two parties. In general it is less then the amount of work extractable when one party is in possession of the entire state. We derive bounds for this “work deficit” and calculate it explicitly for a number of different cases. In particuar, for pure states the work deficit is exactly equal to the distillable entanglement of...
-
Quantum strategies for rendezvous and domination tasks on graphs with mobile agents
PublikacjaThis paper explores the application of quantum nonlocality, a renowned and unique phenomenon acknowledged as a valuable resource. Focusing on an alternative application, we demonstrate its quantum advantage for mobile agents engaged in specific distributed tasks without communication. The research addresses the significant challenge of rendezvous on graphs and introduces a distributed task for mobile agents grounded in the graph...
-
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
PublikacjaThis article is intended to analyze forced vibrations of a piezoelectric-piezomagnetic ceramic nanoplate by a new refined shear deformation plate theory in conjunction with higher-order nonlocal strain gradient theory. As both stress nonlocality and strain gradient size-dependent effects are taken into account using the higher-order nonlocal strain gradient theory, the governing equations of the composite nanoplate are formulated....
-
Thermo-resonance analysis of an excited graphene sheet using a new approach
PublikacjaForced vibration of graphene nanoplate based on a refined plate theory in conjunction with higher-order nonlocal strain gradient theory in the thermal environment has been investigated. Regarding the higher-order nonlocal strain gradient theory, both stress nonlocality and size-dependent effects are taken into account, so the equilibrium equations which are governing on the graphene sheet have been formulated by the theory....
-
Quantifying Contextuality
PublikacjaContextuality is central to both the foundations of quantum theory and to the novel information processing tasks. Despite some recent proposals, it still faces a fundamental problem: how to quantify its presence? In this work, we provide a universal framework for quantifying contextuality. We conduct two complementary approaches: (i) the bottom-up approach, where we introduce a communication game, which grasps the phenomenon of...
-
Complementarity between entanglement-assisted and quantum distributed random access code
PublikacjaCollaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublikacjaIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublikacjaIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
On a flexomagnetic behavior of composite structures
PublikacjaThe popularity of the studies is getting further on the flexomagnetic (FM) response of nano-electro-magneto machines. In spite of this, there are a few incompatibilities with the available FM model. This study indicates that the accessible FM model is inappropriate when considering the converse magnetization effect that demonstrates the necessity and importance of deriving a new FM relation. Additionally, the literature has neglected...
-
Local hidden–variable models for entangled quantum states
PublikacjaWhile entanglement and violation of Bell inequalities were initially thought to be equivalent quantum phenomena, we now have different examples of entangled states whose correlations can be described by local hidden-variable models and, therefore, do not violate any of the Bell inequalities. We provide an up-to-date overview of the existing literature regarding local hidden-variable models for entangled quantum states, in both...
-
Steering is an essential feature of non-locality in quantum theory
PublikacjaA physical theory is called non-local when observers can produce instantaneous effects over distant systems. Non-local theories rely on two fundamental effects: local uncertainty relations and steering of physical states at a distance. In quantum mechanics, the former one dominates the other in a well-known class of non-local games known as XOR games. In particular, optimal quantum strategies for XOR games are completely determined...
-
Elemental and tight monogamy relations in nonsignaling theories
PublikacjaPhysical principles constrain the way nonlocal correlations can be distributed among distant parties. These constraints are usually expressed by monogamy relations that bound the amount of Bell inequality violation observed among a set of parties by the violation observed by a different set of parties. We prove here that much stronger monogamy relations are possible for nonsignaling correlations by showing how nonlocal correlations...