Wyniki wyszukiwania dla: FRACTIONAL CALCULUS
-
Fractional Calculus and Applied Analysis
Czasopisma -
Modelling heat transfer in heterogeneous media using fractional calculus
Publikacja -
Modeling Heat Transfer in Heterogeneous Media Using Fractional Calculus
Publikacja -
Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)
PublikacjaThe paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...
-
Fractional Differential Calculus
Czasopisma -
Some applications of fractional order calculus
Publikacja -
Fractional Calculus Evaluation of Hyaluronic Acid Crosslinking in a Nanoscopic Part of Articular Cartilage Model System
PublikacjaThis work presents a study of the mechanism of physical crosslinking of hyaluronic acid in the presence of common phospholipids in synovial joint organ systems. Molecular dynamic simulations have been executed to understand the formation of hyaluronan networks at various phospholipid concentrations. The results of the simulations suggest that the mechanisms exhibit subdiffusion characteristics. Transportation quantities derive...
-
Variable Order Differential Models of Bone Remodelling * *This work was supported by FCT, through IDMEC, under LAETA, projects UID/EMS/50022/2013, BoneSys, joint Polish-Portuguese project Modelling and controlling cancer evolution using fractional calculus, PERSEIDS (PTDC/EMS-SIS/0642/2014) and IF/00653/2012
Publikacja -
Functional delay fractional equations
PublikacjaIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
Systems of Nonlinear Fractional Differential Equations
PublikacjaUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof
PublikacjaRecently, the fractional Noether's theorem derived by G. Frederico and D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B. Malinowska in (see [7]) using a counterexample and doubts are stated about the validity of other Noether's type Theorem, in particular ([9],Theorem 32). However, the counterexample does not explain why and where the proof given in [10] does not work. In this paper, we make a detailed analysis...
-
Diffusion equations with spatially dependent coefficients and fractal Cauer-type networks
PublikacjaIn this article, we formulate and solve the representation problem for diffusion equations: giving a discretization of the Laplace transform of a diffusion equation under a space discretization over a space scale determined by an increment h > 0, can we construct a continuous in h family of Cauer ladder networks whose constitutive equations match for all h > 0 the discretization. It is proved that for a finite differences discretization...
-
Fractional Order Dynamic Positioning Controller
PublikacjaImproving the performance of Dynamic Positioning System in such applications as station keeping, position mooring and slow speed references tracking requires improving the position and heading control precision. These goals can be achieved through the improvement of the ship control system. Fractional-order calculus is a very useful tool which extends classical, integer-order calculus and is used in contemporary modeling and control...
-
Numerical Investigation of Nuclear Reactor Kinetic and Heat Transfer Fractional Model with Temperature Feedback
PublikacjaAbstract—In the paper, the numerical results concerning the kinetics and proposed heat exchange models in nuclear reactor based on fractional calculus are presented for typical inputs. Two fractional models are proposed and compared with the model based on ordinary derivative. The first fractional model is based on one of the generalized Cattaneo equations. The second one is based on replacing the ordinary to fractional order of...
-
Simulation of Signal Propagation Along Fractional-Order Transmission Lines
PublikacjaIn this paper, the simulation method of signal propagation along fractional-order (FO) transmission lines is presented. Initially, fractional calculus and the model of FO transmission line are introduced. Then, the algorithm allowing for simulation of the nonmonochromatic wave propagation along FO transmission lines is presented. It employs computations in the frequency domain, i.e., an analytical excitation is transformed to the...
-
Simulation of Wave Propagation in Media Described by Fractional-Order Models
PublikacjaIn this paper, algorithms for simulation of the wave propagation in electromagnetic media described by fractional-order (FO) models (FOMs) are presented. Initially, fractional calculus and FO Maxwell's equations are introduced. The problem of the wave propagation is formulated for media described by FOMs. Then, algorithms for simulation of the non-monochromatic wave propagation are presented which employ computations in the time...
-
Numerical and quantitative analysis of HIV/AIDS model with modified Atangana-Baleanu in Caputo sense derivative
PublikacjaFractional calculus plays an important role in the development of control strategies, the study of the dynamical transmission of diseases, and some other real-life problems nowadays. The time-fractional HIV/AIDS model is examined using a novel method in this paper. Based on the Atangana-concept Baleanu’s of a derivative in the Caputo sense, the current modified fractional derivative operator uses singular and non-local kernels....
-
Marek Czachor prof. dr hab.
Osoby -
Bartosz Puchalski dr inż.
Osoby -
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublikacjaA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
Numerical Test for Stability Evaluation of Analog Circuits
PublikacjaIn this contribution, a new numerical test for the stability evaluation of analog circuits is presented. Usually, if an analog circuit is unstable then the roots of its characteristic equation are localized on the right half-plane of the Laplace s- plane. Because this region is unbounded, we employ the bilinear transformation to map it into the unit disc on the complex plane. Hence, the existence of any root inside the unit disc...
-
Comparative Study of Integer and Non-Integer Order Models of Synchronous Generator
PublikacjaThis article presents a comparison between integer and non-integer order modelling of a synchronous generator, in the frequency domain as well as in the time domain. The classical integer order model was compared to one containing half -order systems. The half-order systems are represented in a Park d-q axis equivalent circuit as impedances modelled by half-order transmittances. Using a direct method based on the approximation...
-
On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory
PublikacjaIn this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited...
-
Signal propagation in electromagnetic media described by fractional-order models
PublikacjaIn this paper, signal propagation is analysed in electromagnetic media described by fractional-order (FO) models (FOMs). Maxwell’s equations with FO constitutive relations are introduced in the time domain. Then, their phasor representation is derived for one-dimensional case of the plane wave propagation. With the use of the Fourier transformation, the algorithm for simulation of the non-monochromatic wave propagation is introduced....
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublikacjaThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublikacjaIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublikacjaThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Crank–Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations
PublikacjaIn this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grünwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes....
-
Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment
PublikacjaWe study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k_{B}T, which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar...
-
Fractional Order Circuit Elements Derived from Electromagnetism
PublikacjaIn this paper, derivations of fractional-order (FO) circuit-element equations from electromagnetism are presented. Whilst many papers are devoted to FO modelling of electrical circuits, there are no strong foundations for such an approach. Therefore, we investigate relations between the FO electromagnetism and the FO circuit theory. Our derivations start from quasi-static (QS) approximations of Maxwell's equations in media with...