Filtry
wszystkich: 27
Wyniki wyszukiwania dla: TRAFFIC PREDICTION
-
Traffic Noise Analysis Applied to Automatic Vehicle Counting and Classification
PublikacjaProblems related to determining traffic noise characteristics are discussed in the context of automatic dynamic noise analysis based on noise level measurements and traffic prediction models. The obtained analytical results provide the second goal of the study, namely automatic vehicle counting and classification. Several traffic prediction models are presented and compared to the results of in-situ noise level measurements. Synchronized...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublikacjaSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
ANALYSIS OF POSSIBILITIES FOR THE USE OF VOLUME-DELAY FUNCTIONS IN THE PLANNING MODULE OF THE TRISTAR SYSTEM
PublikacjaTravel time is a measure commonly used for traffic flow modelling and traffic control. It also helps to evaluate the quality of traffic control systems in urban areas. Traffic control systems that use traffic models to predict changes and disruptions in vehicle flows have to use vehicle speed-prediction models. Travel time estimation studies the effects of traffic volumes on a street section at an average speed. The TRISTAR Integrated...
-
Study on the accuracy of axle load spectra used for pavement design
PublikacjaWeigh-in-Motion (WIM) systems are used in order to reduce the number of overloaded vehicles. Data collected from WIM provide characteristics of vehicle axle loads that are crucial for pavement design as well as for the development of pavement distress prediction models. The inaccuracy of WIM data lead to erroneous estimation of traffic loads and in consequence inaccurate prediction of pavement distress process. The objective of...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Travel Time of Public Transport Vehicles Estimation
PublikacjaEffective prediction of speed is central to advanced traveler information and transportation management systems. The speed of public transport vehicles is affected by many external factors including traffic volume, organization and infrastructure. The literature presents methods for estimating travel time on sections of a transport network and vehicle arrival at stops, often making use of the AVL (automatic vehicle location). The...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublikacjaThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Injury Prediction Models for Onshore Road Network Development
PublikacjaIntegrating different modes of transport (road, rail, air and water) is important for port cities. To accommodate this need, new transport hubs must be built such as airports or sea ports. If ports are to grow, they must be accessible, a feature which is best achieved by building new roads, including fast roads. Poland must develop a network of fast roads that will provide good access to ports. What is equally important is to upgrade...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Dane BadawczeSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Long-term hindcast simulation of sea level in the Baltic Sea
Dane BadawczeThe dataset contains the results of numerical modelling of sea level fluctuations over a period of 50 years (1958-2007) in the Baltic Sea. A long-term hindcast simulation was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). The hydrodynamic model...
-
Long-term hindcast simulation of water temperature and salinity in the Baltic Sea
Dane BadawczeThe dataset contains the results of numerical modelling of water temperature and salinity over a period of 50 years (1958-2007) in the Baltic Sea. A long-term hindcast simulation was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). The hydrodynamic...
-
Long-term hindcast simulation of currents in the Baltic Sea
Dane BadawczeThe dataset contains the results of numerical modelling of currents over a period of 50 years (1958-2007) in the Baltic Sea . A long-term hindcast simulation was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). The hydrodynamic model was coupled...
-
Long-term hindcast simulation of sea ice in the Baltic Sea
Dane BadawczeThe data set contains the results of numerical modeling of sea ice over a period of 50 years (1958-2007) in the Baltic Sea. A long-term hindcast simulation was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). A numerical dynamic-thermodynamic model...
-
AVHRR Level1CD covering Baltic Sea area year 2006
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2010
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2007
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2011
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2012
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2008
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2009
Dane BadawczeThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2001
Dane BadawczeThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2005
Dane BadawczeThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2004
Dane BadawczeThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2003
Dane BadawczeThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
AVHRR Level1CD covering Baltic Sea area year 2002
Dane BadawczeThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
SkinDepth - synthetic 3D skin lesion database
Dane BadawczeSkinDepth is the first synthetic 3D skin lesion database. The release of SkinDepth dataset intends to contribute to the development of algorithms for:
-
Data on LEGO sets release dates and retail prices combined with aftermarket transaction prices between June 2018 and June 2023.
Dane BadawczeThe dataset contains LEGO bricks sets item count and pricing history for AI-based set pricing prediction.