Filtry
wszystkich: 222
Wyniki wyszukiwania dla: fracture monitoring
-
Coda wave interferometry in monitoring the fracture process of concrete beams under bending test
PublikacjaEarly detection of damage is necessary for the safe and reliable use of civil engineering structures made of concrete. Recently, the identification of micro-cracks in concrete has become an area of growing interest, especially using wave-based techniques. In this paper, a non-destructive testing approach for the characterization of the fracture process was presented. Experimental tests were made on concrete beams subjected to mechanical...
-
Microcrack monitoring and fracture evolution of polyolefin and steel fibre concrete beams using integrated acoustic emission and digital image correlation techniques
PublikacjaThe use of polymer and steel fibres in plain concrete appears to be an excellent solution for limiting crack propagation and improving the post-ductility performance of concrete structures. Based on this premise, this study investigated the fracture evolution of polyolefin fibre-reinforced concrete (PFRC) and steel fibre-reinforced concrete (SFRC) specimens through the integrated application of two diagnostic techniques, acoustic...
-
Monitoring the fracture process of concrete during splitting using integrated ultrasonic coda wave interferometry, digital image correlation and X-ray micro-computed tomography
PublikacjaThe paper deals with the continuous-time monitoring of mechanical degradation in concrete cubes under splitting. A series of experiments performed with integrated coda wave interferometry (CWI) and digital image correlation (DIC), supported with X-ray micro-computed tomography (micro-CT) is reported. DIC and micro-CT techniques were used to characterize the fracture process in detail. CWI method was proved to be effective in the...
-
Internal imaging of concrete fracture based on elastic waves and ultrasound computed tomography
PublikacjaThe condition assessment of concrete structures belongs to the greatest challenges of non-destructive testing. Monitoring the fracture process of concrete and detecting cracks at the earliest possible stage is a vital aspect to ensure the safety of civil engineering objects. The use of ultrasound tomography enables imaging the internal structure of a tested element. This study aims at the visualization of fracture damage in concrete...
-
Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation
PublikacjaThis study explores the monitoring of the fracture process in concrete beams and aims to characterize the evolution of damage in polyolefin fibre-reinforced concrete beams by utilizing the integrated application of two measurement techniques, digital image correlation and ultrasonic testing. The interpretation of registered wave time histories data was provided by the calculation of the magnitude-phase-composite metrics. An efficient...
-
Planning, Configuration and Usefulness of Microseismic Monitoring on Eastern-Europe Platform – Example from East Pomerania
PublikacjaThe microseismic monitoring is a method of monitoring of fracture propagation during hydraulic fracturing process. The method uses array of geophones to localize micro tremors induced by liquid pumped underground at high rate and pressure. The acquired information helps to optimize fracturing process and prevents fracture growth to aquifer levels. It proved to be useful on several unconventional hydrocarbon reservoirs in the USA....
-
A study on microcrack monitoring in concrete: discrete element method simulations of acoustic emission for non-destructive diagnostics
PublikacjaThe research is focused on the monitoring of fracture evolution in concrete beams under three-point bending using the acoustic emission technique and the discrete element method. The main objective of the study was to numerically and experimentally investigate the mechanism behind the generation of elastic waves during acoustic emission events and their interaction with micro- and macro-cracking in concrete beams under monotonic...
-
Comparative study on fracture evolution in steel fibre and bar reinforced concrete beams using acoustic emission and digital image correlation techniques
PublikacjaIn recent decades, the demand for sustainable construction practices has increased, but raw materials such as reinforcing steel remain scarce. Therefore, steel fibres have emerged as a popular and sustainable choice in the construction industry, offering a cost-effective alternative to traditional steel bar reinforcement for both flatwork and elevated structures. The purpose of this study is therefore to compare the performance...
-
Adhesive Monitoring with Instrumented Wedge Test
PublikacjaThe wedge test (sometimes called the Boeing wedge test) is amongst the most readily exploitable techniques for assessment of the rate-dependent fracture energy of adhesive materials when used to bond relatively rigid substrates. With its siblings: the double cantilever beam (DCB), and the tapered double cantilever beam (TDCB), a force is applied, essentially in cleavage, to provoke substrate separation perpendicularly to the bondline...
-
Two tests for adhesive bonding long term characterization: principles and applications
PublikacjaThis article describes recent refinement of the traditional wedge test technique used to characterize durability of the adhesive joints. We propose two types of measuring protocols to monitor precisely and continuously the propagation of an "effective" crack during long term mode I fracture mechanic test. First method is directly derived from the traditional wedge test technique and consist in monitoring the surface strain of adherent...
-
Fracture in Asymmetric Bonded Joints
PublikacjaAdhesion was studied in asymmetric bonded joints using fracture mechanics tests. The asymmetric bonded joints consist of two different type and/or thickness materials bonded by an adhesive. Mentions of asymmetric bonded joint tests employed so far are rare in the literature. They are imperfect and therefore are not standardized. Accordingly three new tests were introduced in this work to study bonded joints. The new metrological...
-
Crack monitoring in concrete beams under bending using ultrasonic waves and coda wave interferometry: the effect of excitation frequency on coda
PublikacjaConcrete is one of the most widely used construction materials in the world. In recent years, various non-destructive testing (NDT) and structural health monitoring (SHM) techniques have been investigated to improve the safety and control of the current condition of concrete structures. This study focuses on micro-crack monitoring in concrete beams. The experimental analysis was carried out on concrete elements subjected to three-point...
-
Microseismic Monitoring of Hydraulic Fracturing - Data Interpretation Methodology With an Example from Pomerania
PublikacjaMicroseismic monitoring is a method for localizing fractures induced by hydraulic fracturing in search for shell gas. The data is collected from an array of geophones deployed on the surface or underground. Ground vibrations are recorded and analysed for fracture location, magnitude and breakage mechanism. For successful microseismic monitoring one need a velocity model of underlying formations. The model is further tuned with...
-
An in situ technique for the assessment of adhesive properties of a joint under load
PublikacjaSlow crack propagation in adhesive bonded joints has been characterised using an asymmetric wedge test. Crack position was evaluated from strain gauge measurements, both in the debonded partof the joint and in the bonded zone. Test temperature was changed during loading, giving insight into bond evolution. The technique allows accurate, and virtually continuous, determination of crack position to be made, and therefore the evaluation...
-
MATCHED FILTER APPROACH FOR MICROSEISMIC SIGNAL PROCESSING OF REAL DATA FROM EAST POMERANIA SHALE GAS
PublikacjaThe microseismic monitoring is a method of monitoring of fracture propagation during hydraulic fracturing (HF)process. An array of several hundred geophones is placed on the surface to record little ground tremors induced by fracturing process. Filtration and summation of signals from geophones is essential to identify and locate fracturing events from underground. Authors propose a method of matched filtering, that is usually...
-
Microcracking monitoring and damage detection of graphene nanoplatelets-cement composites based on acoustic emission technology
PublikacjaThis study aims to identify the micro-cracking pattern and structural applications of cement composites replaced with 0 wt%, 0.04 wt%, and 0.08 wt% contents of graphene nanoplatelets (GNPs) over cement weight through acoustic emission (AE) monitoring under mechanical degradation. The ultraviolet-visible spectroscopy (UV–vis) results showed that at 60 min sonication period, GNP-4 showed maximum absorbance rate of 16.15% compared...
-
MICROSEISMIC EVENT DETECTION USING DIFFERENT ALGORITHMS ON REAL DATA FROM PATCH ARRAY GEOPHONE GRID FROM EASTERN POMERANIA FRACTURING JOB
PublikacjaThe microseismic monitoring is a method of monitoring of fracture propagation during hydraulic fracturing process. Hydraulic fracturing is a method of reservoir stimulation used especially for unconventional gas recovery. A matrix of several thousand geophones is placed on the surface of earth to record every little tremor of ground induced by fracturing process. Afterwards, the signal is analysed and the place of tremor occurrence...
-
Experimental investigations on the mechanical properties and damage detection of carbon nanotubes modified crumb rubber concrete
PublikacjaThis study presents a modified crumb rubber (MCR) concrete design mix reinforced with multi-walled carbon nanotubes (MWCNTs), mechanical characterization, and cracking monitoring using the acoustic emission (AE) technique. The results showed that the bridging effect of MWCNTs and MCR in the concrete mix mitigated the shortcomings of MWCNT-MCR concrete and improved the flexural and compressive strengths by 18.3% and 26.5%, respectively,...
-
Numerical investigations on early indicators of fracture in concrete at meso-scale.
PublikacjaFracture is a major reason of the global failure of concretes. The understanding of fracture is important to ensure the safety of structures and to optimize the material behaviour. In particular an early prediction possibility of fracture in concretes is of major importance. In this paper, concrete fracture under bending was numerically analysed using the Discrete Element Method (DEM). The real mesoscopic structure of a concrete...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing
PublikacjaThe paper focuses on researching the effect of fatigue loading on metallic structure, lifetime, and fracture surface topographies in AISI H13 steel specimens obtained by selective laser melting (SLM). The topography of the fracture surfaces was measured over their entire area, according to the entire total area method, with an optical three-dimensional surface measurement system. The fatigue results of the SLM 3D printed steel...
-
Reliable method of assessing fracture properties of asymmetric bonded joints
PublikacjaTwo methods of assessing fracture properties of adhesive joints were studied. Two wedge tests: with continuous deflection and with force measurements were compared. Asymmetric geometry of the bonded joint was considered, i.e. two different plates of aluminium alloys: Al-Cu and Al-Mg, were bonded with epoxy DGEBA adhesive. The analytical model is shown to estimate the values of fracture properties: crack position and critical fracture...
-
Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens
PublikacjaThe objectives of this study were to investigate the fracture surface topography of X8CrNiS18-9 austenitic stainless-steel specimens for different loadings and notch radii and to supplement the knowledge about the fracture mechanisms for fatigue performance. Cases with three different values of the notch radius ρ and the stress amplitude σa were analysed. The fracture topographies were quantified by the areas over their entire...
-
Numerical modelling of the mesofracture process of sintered 316L steel under tension using microtomography
PublikacjaThis paper concerns numerical modelling of the deformation process, taking into account the local fracture of porous 316L sinters at the mesoscopic scale using the finite element method. Calculations are performed with the use of geometrical models, to map the realistic shape of the porous mesostructure of the material, obtained by means of computed microtomography. The microtomographic device has limited and insufficient measurement...
-
Fracture surface formation of notched 2017A-T4 aluminium alloy under bending fatigue
PublikacjaThe effect of cyclic loading on facture surface topology in notched components made by aluminium alloys is not completely clear. Fractogra-phy and fracture mechanics can help to understand this interdependency. This paper aims to study the distribution of the fracture surface roughness of notched 2017A-T4 aluminium alloy after bending fatigue using an optical focus-variation surface measurement technique by applying the fracture...
-
Cyclic deformation and fracture behaviour of additive manufactured maraging steel under variable-amplitude loading
PublikacjaThe cyclic deformation and fracture behaviour of 18Ni300 maraging steel produced by laser beam powder bed fusion is studied under variable-amplitude loading. The tests were conducted under fully-reversed strain-controlled conditions with a loading sequence comprising three ascending cycles and three descending cycles repeated sequentially until failure. After the tests, fracture surfaces were examined using height and volume surface...
-
Fractal dimension for bending–torsion fatigue fracture characterisation
PublikacjaFracture surfaces after biaxial fatigue tests were compared using fractal dimension for three types of metallic materials in smooth and notched specimens made of S355J2 and 10HNAP steels and 2017-T4 aluminium alloy, considering both proportional and nonproportional cyclic loading. High-resolution optical 3D measurement studies were performed on the entire fracture surface. A direct correlation between fractal dimension and fatigue...
-
The Smith-Watson-Topper parameter and fracture surface topography relationship for additively manufactured 18Ni300 steel subjected to uniaxial variable-amplitude loading
PublikacjaIn this paper, the association between Smith-Watson-Topper (SWT) parameter and fracture surface topography is studied in additively manufactured maraging steel exposed to variable-amplitude fatigue loading. The post-failure fracture surfaces were examined using a non-contact 3D surface topography measuring system and the entire fracture surface method. The focal point is on the correspondence between fatigue characteristics, articulate...
-
Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier
PublikacjaIn the present paper, we have carefully investigated the morphology and fracture mechanism of the recycled polyurethane (RPU) /epoxy blend system. The second phase (RPU) added to the epoxy resin has a positive effect on the overall mechanical properties. Interestingly, the recycled polymer has a remarkable effect on the fracture toughness of epoxy resin. The mechanism behind the fracture toughness improvement up on the addition...
-
Estimation of fracture toughness and shear yield stress of orthotropic materials in cutting with rotating tools
PublikacjaThe cutting force is an energetic effect of splitting material, and might be considered from a point of view of modern fracture mechanics. Forecasting of the shear plane angle in cutting broaden possibilities for modelling of the cutting process even for thin uncut chips. Such mathematical model has been developed here for description of the orthotropic materials’ cutting on the base of fracture theory, and includes work of separation...
-
Impact of interface heterogeneity on joint fracture
PublikacjaThe effects of heterogeneities (weak zones in particular) inadhesive joints and their importance on overall fracture propertiesare relatively unknown, but doubtlessly they may be crucial inmany applications. Using a model heterogeneous adhesive bond,represented by a given mixture of regions of strong and weakadhesion, we have studied the influence of interface variabilityon overall fracture energy (global energy release rate)....
-
SAWING PROCESS AS A NEW ALTERNATIVE WAY OF DETERMINING SOME WOOD PROPERTIES
PublikacjaCutting forces (power) could be considered from a point of view of modern fracture mechanics. The developed cutting model, derived from fracture mechanics, includes work of separation (fracture toughness) in addition to plasticity and friction, and also dullness of the cutting edge described by the cutting edge radius. Moreover, forecasting of the shear plane angle for the cutting models, broaden possibilities of energetic effects...
-
Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua method
PublikacjaWe present a two phase flow conceptual model, the corresponding simulator (2pMINC) and a workflow for large-scale fractured reservoirs, based on a continuum fracture approach which uses the multiple interacting continua (MINC) method complemented with an improved upscaling technique. The complex transient behavior of the flow processes in fractured porous media is captured by subgridding the coarse blocks in nested volume elements...
-
AN ALTERNATIVE WAY OF DETERMINING MECHANICAL PROPERTIES OF WOOD BY MEASURING CUTTING FORCES
PublikacjaThe cutting force is an energetic effect of splitting material, and might be therefore considered from a point of view of modern fracture mechanics. The dedicated mathematical model developed for description of the wood cutting has been developed here on the base of fracture theory, and includes work of separation (fracture toughness) in addition to the material plasticity and friction. The effect of the cutting edge dullness is...
-
Comparison of the fracture toughness of pine wood determined on the basis of orthogonal linear cutting and frame sawing
PublikacjaIn this paper, the values of the fracture toughness of Scots pine determined by cutting tests are presented. The cutting tests were carried out using the samples of Scotch pine (Pinus sylvestris L.) from Pomeranian Region, Poland. These experiments were carried out on two research stands: orthogonal linear cutting tests were conducted using the microtome instrument and the frame saw PRW-15M was used for sawing tests. The values...
-
Fractographic-fractal dimension correlation with crack initiation and fatigue life for notched aluminium alloys under bending load
PublikacjaIn this study, fatigue fracture surfaces of aluminium alloy 2017-T4 notched specimens were investigated under cyclic bending to find an alternative failure loading index.. The surface topographies were measured on the entire fracture area with an optical profilometer for different loading conditions. Fatigue crack initiation life Ni and total fatigue life Nf were examined using standard surface topography parameters (such as, root...
-
Report for the Short Term Scientific Mission within COST Action FP1101: development of the in-field sensor for estimation of fracture toughness and shear strength by measuring cutting forces
PublikacjaKnowledge on the fracture properties of materials is essential to assure structural integrity and proper design of mechanical connections in timber constructions. Measurement of this property is, however, a very challenging task. The linear fracture mechanics is usually used for its assessment assisted with experimental data acquired by means of various techniques, usually of destructive nature. The cutting force is an energetic...
-
Strain energy density and entire fracture surface parameters relationship for LCF life prediction of additively manufactured 18Ni300 steel
PublikacjaIn this study, the connection between total strain energy density and fracture surface topography is investigated in additively manufactured maraging steel exposed to low-cycle fatigue loading. The specimens were fabricated using laser beam powder bed fusion (LB-PBF) and examined under fully-reversed strain-controlled setup at strain amplitudes scale from 0.3% to 1.0%. The post-mortem fracture surfaces were explored using a non-contact...
-
Investigation on Mode I Fracture Behavior of Hybrid Fiber-Reinforced Geopolymer Composites
PublikacjaRecent reports in the literature have shown that fber-reinforced geopolymer composites (FRGC) made with monofbers exhibit a signifcant enhancement in fracture energy. However, many aspects of the fracture performance of hybrid fberreinforced geopolymer composites (HFRGC) remain largely unexploited, and these are predominant for the structures. For the frst time, the mode I fracture energy of HFRGC is investigated. The mode I behavior...
-
Effect of bending-torsion on fracture and fatigue life for 18Ni300 steel specimens produced by SLM
PublikacjaIn this study, different fracture surfaces caused by fatigue failure were generated from 18Ni300 steel produced by selective laser melting (SLM). Hollow round bars with a transverse hole were tested under bending-torsion to investigate the crack initiation mechanisms and fatigue life. Next, the post-failure fracture surfaces were examined by optical profilometer and scanning electron microscope. The focus is placed on the relationship...
-
Crack Resistance of Asphalt Concrete Subjected to Environmental Factors
PublikacjaThe paper presents an analysis of the influence of environmental factors on the cracking susceptibility of asphalt concrete resulting in a change in the durability of asphalt pavement. In order to assess the phenomenon, laboratory tests were carried out taking into account the destructive effects of moisture, freeze-thaw cycle and long-term ageing. The influence of both factors occurring simultaneously was also verified. Due to...
-
Fracture prediction in flat PMMA notched specimens under tension - effectiveness of the equivalent material concept and fictitious material concept
PublikacjaThe fracture of notched elements under mode I loading (tension) remains an inexhaustible research topic, especially when it comes to the fracture of thermoplastic materials such as polymethylmethacrylate (PMMA), which experience considerable plastic strains under tension. The paper points out that traditional brittle fracture criteria such as mean stress (MS) or maximum tangential stress (MTS) criteria used to predict this phenomenon do...
-
Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters
PublikacjaIn this paper, the fracture behavior and fatigue crack growth rate of the 2024-T351 aluminum alloy has been investigated. At first, the 2024-T351 aluminum alloys have been welded using friction stir welding procedure and the fracture toughness and fatigue crack growth rate of the CT specimens have been studied experimentally based on ASTM standards. After that, in order to predict fatigue crack growth rate and fracture toughness,...
-
A brief note on monotonic and fatigue fracture events investigation of thin-walled tubular austenitic steel specimens via fracture surface topography analysis (FRASTA)
PublikacjaThe main objective of this short communication is to show the fracture progression in each loading case and complement knowledge about fracture mechanisms underpinning the tensile and fatigue performance of thin-walled tubes. For this purpose, the fracture surface topography analysis (FRASTA) method was used in the thin-walled tubular austenitic stainless-steel specimens. Two cases were analyzed: monotonic tension, and uniaxial...
-
MODELLING OF CONCRETE FRACTURE AT AGGREGATE LEVEL USING DEM BASED ON X-RAY mu CT IMAGES OF INTERNAL STRUCTURE
PublikacjaThe paper describes two-dimensional meso-scale numerical results of fracture in notched concrete beams under quasi-static three-point bending. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones (ITZs) and air voids. As a numerical approach, the discrete element method (DEM) was used. The concrete micro-structure in calculations was directly...
-
Analisys of the failure of fixator used in bone surgery
PublikacjaThe Gamma nail (fixator) made of stainless steel, which has broken in the body, was subjected to examination. The fixator was removed from the patient femur. The fracture occurred in the area of the nail hole after two months' stay in the organism. The research included chemical composition, hardness of the Gamma nail material and the observation and analysis of the type of fracture. The research showed the fatigue failure of the...
-
High-Temperature Tensile Behaviour of GTAW Joints of P92 Steel and Alloy 617 for Two Different Fillers
PublikacjaThis study explores the high-temperature (HT) tensile rupture characteristics of a dissimilar gas-tungsten-arc-welded (GTAW) joint between P92 steel and Alloy 617, fabricated using ER62SB9 and ERNiCrCoMo-1 fillers. The high-temperature tensile tests were performed at elevated temperatures of 550 ◦C and 650 ◦C. An optical microscope (OM) and a field emission scanning electron microscope (FESEM) were utilized to characterize the...
-
Entire fracture surface topography parameters for fatigue life assessment of 10H2M steel
PublikacjaIn this paper, the entire fracture surface approach was used to assess an effect of 280,000 h of exploitation under internal pressure of 2.9 MPa and high temperature of 540 °C on the fatigue response of 10H2M (10CrMo9–10) power engineering steel. The mechanical testing was carried out on the hourglass specimens produced from the as-received, unused pipeline and the same material after long-time exploitation. The uniaxial tensile...
-
The experimental and numerical investigation of fracture behaviour in PMMA notched specimens under biaxial loading conditions – Tension with torsion
PublikacjaThis paper presents the results of experimental fracture test of flat PMMA specimens under biaxial loading condition tension with torsion (proportional). The specimens were made in two thicknesses: 5 and 15 mm and were weakened with V-type edge notches with different root radii: 0.5; 2 and 10 mm. Thanks to the ARAMIS 3D 4 M non-contact vision system, measurement of the elongation and twist angle were recorded. During experimental...
-
Dynamics of cutting power during sawing with circular saw blades as an effect of wood properties changes in the cross section
PublikacjaIn the paper the effect of the method calculation upon the cutting power is presented. In computations were used models in which fracture toughness was incorporated. The comparison concerned models as follows: FM-CM – classic model in which the sum of all uncut chip thicknesses of the simultaneously teeth engaged represented the mean uncut chip thickness, FM-FDM – full dynamical model in which besides variable uncut chip thickness...