Filtry
wszystkich: 5246
wybranych: 430
-
Katalog
- Publikacje 3263 wyników po odfiltrowaniu
- Czasopisma 466 wyników po odfiltrowaniu
- Konferencje 14 wyników po odfiltrowaniu
- Wydawnictwa 2 wyników po odfiltrowaniu
- Osoby 111 wyników po odfiltrowaniu
- Wynalazki 3 wyników po odfiltrowaniu
- Projekty 41 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Zespoły Badawcze 2 wyników po odfiltrowaniu
- Kursy Online 450 wyników po odfiltrowaniu
- Wydarzenia 70 wyników po odfiltrowaniu
- Dane Badawcze 823 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: E-VISA
-
Dataset of non-isomorphic graphs being coloring types (K5-e,Km-e;n), 2<m<5, 1<n<R(K5-e,Km-e)
Dane BadawczeFor K5-e and Km-e graphs, the type coloring (K5-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K5-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K5-e,Km-e) is the smallest...
-
Dataset of non-isomorphic graphs being coloring types (K3-e,Km-e;n), 2<m<8, 1<n<R(K3-e,Km-e)
Dane BadawczeFor K3-e and Km-e graphs, the type coloring (K3-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K3-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K3-e,Km-e) is the smallest...
-
Dataset of non-isomorphic graphs being coloring types (K4-e,Km-e;n), 2<m<7, 1<n<R(K4-e,Km-e)
Dane BadawczeFor K4-e and Km-e graphs, the type coloring (K4-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K4-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K4-e,Km-e) is the smallest...
-
Dataset of non-isomorphic graphs being coloring types (K6-e,Km-e;n), 2<m<5, 1<n<R(K6-e,Km-e)
Dane BadawczeFor K6-e and Km-e graphs, the type coloring (K6-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K6-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed. The Ramsey number R(K6-e,Km-e) is the smallest...
-
Tensile curve of E grade steel for shipbuilding
Dane BadawczeIn the shipbuilding industry, the risk of brittle fractures developing in constructions is limited by employing certified materials of specific impact strength, determined using the Charpy method (for a given design temperature) and by exercising control over the welding processes (technology qualification, supervision of production, tests of non-destructive...
-
UV-Vis measurements and SEM images of Ag nanostructures
Dane BadawczeUv-vis and SEM of Ag nanostructures. Structures were obtained by dewetting thin films. Various fabrication conditions i.e. temperature, time of the annealing and thickness of the initial layer were subsequently changed.
-
Valorization of bio-based polyols synthesized via biomass liquefaction
Dane BadawczeAs the properties of polyols have a huge impact on the properties of manufactured polyurethanes, this study aims to determine the influence of polyethylene glycols with different molecular masses on the course of the biomass liquefaction process and bio-polyol properties. The obtained polyols were characterized by rheological studies. To confirm the...
-
UV/VIS Spectroscopy of titanium dioxide coated nickel foams
Dane BadawczeThe data includes UV-Vis spectra of titanium dioxide coated nickel foams heated at 400, 500 and 600 C in Ar. Jasco V-650 Spectrophotometer was used and Spectra Measurement software.
-
Data obtained via parametrization of differently mixed audio signals
Dane BadawczeDataset consists of audio samples and the results of their parametrization. The extraction of music parameters was performed using MIRToolbox. Information extracted from the samples was used as a database for master's thesis titled 'The influence of audio signal processing chain in mixing on the emotional state of a music piece'.
-
Dataset of non-isomorphic graphs of the coloring types (K4,Km-e;n), 2<m<5, 1<n<R(K4,Km-e)
Dane BadawczeFor K4 and Km-e graphs, a coloring type (K4,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K4 subgraph in the first color (representing by no edges in the graph) or the Km-e subgraph in the second color (representing by edges in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K4,Km-e)...
-
Dataset of non-isomorphic graphs of the coloring types (K3,Km-e;n), 2<m<7, 1<n<R(K3,Km-e).
Dane BadawczeFor K3 and Km-e graphs, a coloring type (K3,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K3 subgraph in the first color (representing by no edges in the graph) or the Km-e subgraph in the second color (representing by edges in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K3,Km-e)...
-
Dataset of non-isomorphic graphs of the coloring types (Km,K3-e;n), 4<m<8, 1<n<R(Km,K3-e)
Dane BadawczeFor Km and K3-e graphs, a coloring type (Km,K3-e;n) is such an edge coloring of the full Kn graph, which does not have the Km subgraph in the first color (representing by no edges in the graph) or the K3-e subgraph in the second color (representing by edges in the graph). K3-e means the full Km graph with one edge removed.The Ramsey number R(Km,K3-e)...
-
Kolbudy 2021 E - video data - pedestrian, bicycles, vehicles
Dane BadawczeKolbudy 2021 E - video data - pedestrian, bicycles, vehicles
-
UV-Vis-DR-TiO2 heated at 400-600oC in Ar or H2
Dane BadawczeThese data contain UV-Vis/DR spectra of TiO2 heated at 400-600oC in Ar or H2. Transformation of spectra to Kubelka-Munk function was performed together with determination of band gap.
-
Gdansk 2020, Grunwaldzka (E) street - video data - pedestrian, bicycles, vehicles
Dane BadawczeGdansk 2020, Grunwaldzka (E) street - video data - pedestrian, bicycles, vehicles
-
Test of the antimicrobial properties against E. coli of the innovative CS-2b preservative.
Dane BadawczeThe dataset contains the results of a single series of determinations of the antimicrobial properties against E. coli of the innovative CS-2 b preservative in the solution of model fluids.During the test, the infected product is inoculated (on chromogenic Coliform Agar) at specified intervals (0 min. [cs2b 0] and after 1 day-24 h of incubation [cs2b...
-
Test of the antimicrobial properties against E. coli of the innovative CS-2a preservative.
Dane BadawczeThe dataset contains the results of a single series of determinations of the antimicrobial properties against E. coli of the innovative CS-2 a preservative in the solution of model fluids.During the test, the infected product is inoculated (on chromogenic Coliform Agar) at specified intervals (0 min. [cs2a 0] and after 1 day-24 h of incubation [cs2a...
-
Gdansk 2020, Obroncow Wybrzeza - crossing (E) street - video data - pedestrian, bicycles, vehicles
Dane BadawczeThe data contain video traffic data (pedestrian, cyclists, vehicles) registered at Obroncow Wybrzeza (E) street. Date 11.08.2020, 13:00-20:00. The video camera was installed around bicycle crossings and pedestrian crossings at Obroncow Wybrzeza – Chlopska crossing. Camera was mounted on 7-meter-high mast.
-
UV-VIS spectra of adsorption of methyl orange (MO) and methylene blue (MB) by porous carbon material
Dane BadawczeThis dataset contains UV-VIS spectra of adsorption of dyes: methyl orange (MO) and methylene blue (MB) by porous carbon material.
-
Gdansk 2020, Obroncow Wybrzeza - pedestrian crossing (E) street - video data - pedestrian, bicycles, vehicles
Dane BadawczeThe data contain video traffic data (pedestrian, cyclists, vehicles) registered at Obroncow Wybrzeza street. Date 12.08.2020, 6:00-20:00. The video camera was installed around pedestrian crossings. Camera was mounted on 7-meter-high mast.
-
Data points of structures of R1233zd(E) flowing in a circular minichannel at low, medium and high values of saturation pressure
Dane BadawczeDatabase present structures of two-phase flow of R1233zd(E) in 3 mm vertical channel. Database contains datapoints which contain information of reduced pressure (ratio of saturation pressure and critical pressure), quality and mass velocity. 4 two phase structures are distinguished: bubbly flow, slug flow, intermittent flow and annular flow.
-
Results of SEM examination of chitosan/Eudragit E 100 coatings electrophoretically deposited on the Ti grade 2 substrate
Dane BadawczeThe database contains the images of the microstructure of the coatings observed with the SEM scanning electron microscope. The chitosan/Eudragit E 100 coatings deposited on the Ti grade 2 substrate by an electrophoresis process were tested. Different process parameters like Eudragit E 100 concentration (0.25 g and 0.5 g in 100 mL of 1% (v/v) acetic...
-
The XRD diffraction patterns of as-prepared (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials synthesized via the solid state reaction method
Dane BadawczeThe (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials were synthesized via the solid state reaction method and examined as a potential anode material. First, the mixed oxide reagents were pressed into pellets and calcined at 1200 °C for 12 hours to decompose most of the organic compounds. The resulting calcined pellet was ground...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Stages of development of payment cards in Poland
Dane BadawczeAn important stage in the development of the Polish card market was the commencement of the card and check center of Bank Pekao SA in 1992, which became a professional technical background for the widespread issuance of bank cards. At the same year PolCard SA, became the first agent in the country, launched its own terminals for payment intermediation...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.