prof. dr hab. inż. Bożena Kostek
Employment
- Head of Research Laboratory at Laboratorium Akustyki Fonicznej
- Professor at Laboratorium Akustyki Fonicznej
Publications
Filters
total: 391
Catalog Publications
Year 2024
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublicationThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Decoding soundscape stimuli and their impact on ASMR studies
PublicationThis paper focuses on extracting and understanding the acoustical features embedded in the soundscape used in ASMR (Autonomous Sensory Meridian Response) studies. To this aim, a dataset of the most common sound effects employed in ASMR studies is gathered, containing whispering stimuli but also sound effects such as tapping and scratching. Further, a comparative analytical survey is performed based on various acoustical features...
-
Exploring music listening patterns: an online survey
PublicationAn online survey was carried out to explore how respondents listen to music recordings. It was anticipated that the listener’s preferences would be influenced by various factors, such as age, music genre, the contexts in which they listen, and their favored methods of music consumption. Consequently, the data were collected to analyze these relationships. The survey, structured as a web application, encompassed 23 questions,...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Exploring the technological dimension of Autonomous sensory meridian response-induced physiological responses
PublicationBackground In recent years, the scientific community has been captivated by the intriguing Autonomous sensory meridian response (ASMR), a unique phenomenon characterized by tingling sensations originating from the scalp and propagating down the spine. While anecdotal evidence suggests the therapeutic potential of ASMR, the field has witnessed a surge of scientific interest, particularly through the use of neuroimaging techniques...
-
Observing its long-term effects on a short-term, multi-day evaluation of the effectiveness of hearing aid use
PublicationThe main objective of the research study was to develop a method for evaluating the effectiveness of hearing protection with hearing aids tailored to the needs and prevailing conditions in the acoustic environments where the elderly most often reside. The method was also intended to estimate the benefits of hearing aids and allow prediction of such an effect based on a short-term trial. It is noteworthy that a short-term evaluation...
-
Sounding Mechanism of a Flue Organ Pipe—A Multi-Sensor Measurement Approach
PublicationThis work presents an approach that integrates the results of measuring, analyzing, and modeling air flow phenomena driven by pressurized air in a flue organ pipe. The investigation concerns a Bourdon organ pipe. Measurements are performed in an anechoic chamber using the Cartesian robot equipped with a 3D acoustic vector sensor (AVS) that acquires both acoustic pressure and air particle velocity. Also, a high-speed camera is employed...
Year 2023
-
Applying the Lombard Effect to Speech-in-Noise Communication
PublicationThis study explored how the Lombard effect, a natural or artificial increase in speech loudness in noisy environments, can improve speech-in-noise communication. This study consisted of several experiments that measured the impact of different types of noise on synthesizing the Lombard effect. The main steps were as follows: first, a dataset of speech samples with and without the Lombard effect was collected in a controlled setting;...
-
Assessing the attractiveness of human face based on machine learning
PublicationThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Automatic music signal mixing system based on one-dimensional Wave-U-Net autoencoders
PublicationThe purpose of this paper is to show a music mixing system that is capable of automatically mixing separate raw recordings with good quality regardless of the music genre. This work recalls selected methods for automatic audio mixing first. Then, a novel deep model based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. The model is trained on a custom-prepared database. Mixes created using the...
-
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublicationAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...
-
Combining MUSHRA Test and Fuzzy Logic in the Evaluation of Benefits of Using Hearing Prostheses
PublicationAssessing the effectiveness of hearing aid fittings based on the benefits they provide is crucial but intricate. While objective metrics of hearing aids like gain, frequency response, and distortion are measurable, they do not directly indicate user benefits. Hearing aid performance assessment encompasses various aspects, such as compensating for hearing loss and user satisfaction. The authors suggest enhancing the widely used...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublicationIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
Detecting Lombard Speech Using Deep Learning Approach
PublicationRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublicationThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Rediscovering Automatic Detection of Stuttering and Its Subclasses through Machine Learning—The Impact of Changing Deep Model Architecture and Amount of Data in the Training Set
PublicationThis work deals with automatically detecting stuttering and its subclasses. An effective classification of stuttering along with its subclasses could find wide application in determining the severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling communication with the previously mentioned voice assistants. The first part of this work provides an overview of examples of classical and deep learning...
-
SYNTHESIZING MEDICAL TERMS – QUALITY AND NATURALNESS OF THE DEEP TEXT-TO-SPEECH ALGORITHM
PublicationThe main purpose of this study is to develop a deep text-to-speech (TTS) algorithm designated for an embedded system device. First, a critical literature review of state-of-the-art speech synthesis deep models is provided. The algorithm implementation covers both hardware and algorithmic solutions. The algorithm is designed for use with the Raspberry Pi 4 board. 80 synthesized sentences were prepared based on medical and everyday...
-
WYKORZYSTANIE TESTU MUSHRA W BADANIU KORZYŚCI UŻYTKOWANIA PROTEZ SŁUCHOWYCH
PublicationOcena jakości dopasowania aparatów słuchowych w kontekście korzyści, jakie może przy-nieść proteza jest złożonym zagadnieniem. Obiektywne parametry aparatów, które można wy-znaczyć (np. wzmocnienie czy pasmo przenoszenia) nie zawsze mają bezpośredni i decydujący wpływ w subiektywnej ocenie jakości dopasowania protezy słuchowej przez pacjenta. Pomiary efektywności aparatu słuchowego mogą dotyczyć wielu aspektów, między innymi kompensacji...
Year 2022
-
A Novel Method for Intelligibility Assessment of Nonlinearly Processed Speech in Spaces Characterized by Long Reverberation Times
PublicationObjective assessment of speech intelligibility is a complex task that requires taking into account a number of factors such as different perception of each speech sub-bands by the human hearing sense or different physical properties of each frequency band of a speech signal. Currently, the state-of-the-art method used for assessing the quality of speech transmission is the speech transmission index (STI). It is a standardized way...
-
Algoritmically improved microwave radar monitors breathing more acurrate than sensorized belt
PublicationThis paper describes a novel way to measure, process, analyze, and compare respiratory signals acquired by two types of devices: a wearable sensorized belt and a microwave radar-based sensor. Both devices provide breathing rate readouts. First, the background research is presented. Then, the underlying principles and working parameters of the microwave radar-based sensor, a contactless device for monitoring breathing, are described....
-
Analysis-by-synthesis paradigm evolved into a new concept
PublicationThis work aims at showing how the well-known analysis-by-synthesis paradigm has recently been evolved into a new concept. However, in contrast to the original idea stating that the created sound should not fail to pass the foolproof synthesis test, the recent development is a consequence of the need to create new data. Deep learning models are greedy algorithms requiring a vast amount of data that, in addition, should be correctly...
-
Broadening the scope of measurement and analysis of vibrations of an organ pipe employing intensity probe, simulations, and highspeed camera
PublicationThis paper shows an integrated approach to measure, analyze, and model phenomena occurring in an organ pipe driven by pressurized air. The aim of this paper is two-fold, i.e., to measure the pressure signal and the intensity field around the mouth by means of an intensity probe and to visualize and observe the motion of the air jet, which represents the excitation mechanism of the system. This is realized through two techniques,...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublicationThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
Creating a Remote Choir Performance Recording Based on an Ambisonic Approach
PublicationThe aim of this paper is three-fold. First, the basics of binaural and ambisonic techniques are briefly presented. Then, details related to audio-visual recordings of a remote performance of the Academic Choir of the Gdańsk University of Technology are shown. Due to the COVID-19 pandemic, artists had a choice, namely, to stay at home and not perform or stay at home and perform. In fact, staying at home brought in the possibility...
-
Intelligent Audio Signal Processing − Do We Still Need Annotated Datasets?
PublicationIn this paper, intelligent audio signal processing examples are shortly described. The focus is, however, on the machine learning approach and datasets needed, especially for deep learning models. Years of intense research produced many important results in this area; however, the goal of fully intelligent signal processing, characterized by its autonomous acting, is not yet achieved. Therefore, a review of state-of-the-art concerning...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublicationThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
Klasyfikacja emocji w muzyce filmowej z wykorzystaniem uczenia głębokiego
PublicationPraca przedstawia zagadnienia związane z klasyfikacją emocji w muzyce filmowej. W artykule zaproponowano model emocji zawierający dziewięć stanów emocjonalnych, do których przypisany jest kolor zgodnie z teorią koloru w filmie. Kolejne kroki eksperymentu obejmowały wybór muzyki filmowej do testów (baza Epidemic Sound), przygotowanie założeń ankiety oraz modelu emocji wykorzystywanych w testach odsłuchowych, a także konstrukcję...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Mining Knowledge of Respiratory Rate Quantification and Abnormal Pattern Prediction
PublicationThe described application of granular computing is motivated because cardiovascular disease (CVD) remains a major killer globally. There is increasing evidence that abnormal respiratory patterns might contribute to the development and progression of CVD. Consequently, a method that would support a physician in respiratory pattern evaluation should be developed. Group decision-making, tri-way reasoning, and rough set–based analysis...
-
Musical Instrument Identification Using Deep Learning Approach
PublicationThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Noise profiling for speech enhancement employing machine learning models
PublicationThis paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...
-
Pursuing Analytically the Influence of Hearing Aid Use on Auditory Perception in Various Acoustic Situations
PublicationThe paper presents the development of a method for assessing auditory perception and the effectiveness of applying hearing aids for hard-of-hearing people during short-term (up to 7 days) and longer-term (up to 3 months) use. The method consists of a survey based on the APHAB questionnaire. Additional criteria such as the degree of hearing loss, technological level of hearing aids used, as well as the user experience are taken...
-
Pursuing Listeners’ Perceptual Response in Audio-Visual Interactions - Headphones vs Loudspeakers: A Case Study
PublicationThis study investigates listeners’ perceptual responses in audio-visual interactions concerning binaural spatial audio. Audio stimuli are coupled with or without visual cues to the listeners. The subjective test participants are tasked to indicate the direction of the incoming sound while listening to the audio stimulus via loudspeakers or headphones with the head-related transfer function (HRTF) plugin. First, the methodology...
-
Technologia CyberOko do diagnozy, rehabilitacji i komunikowania się z pacjentami niewykazującymi oznak przytomności
PublicationCyberOko jest rozwiązaniem opracowanym w Politechnice Gdańskiej, które umożliwia nawiązanie kontaktu i pracę z osobami głęboko upośledzonymi komunikacyjnie. W sposób inteligentny śledzi ruch gałek ocznych, dzięki czemu umożliwia rehabilitację i ocenę stanu świadomości pacjenta nawet w stanie całkowitego porażenia. Rozwiązanie obejmuje także analizę fal EEG, obiektywne badanie słuchu i badanie sygnałów z macierzy elektrod wszczepianych...
-
Z PERSPEKTYWY NIECO PONAD 15 LAT DZIAŁALNOŚCI ODDZIAŁU IEEE GDAŃSK COMPUTER SOCIETY (CHAPTER C16) NA WYDZIALE ELEKTRONIKI, TELEKOMUNIKACJI I INFORMATYKI, POLITECHNIKI GDAŃSKIEJ
PublicationW pracy przywołano pokrótce najważniejsze działania, które towarzyszyły powstaniu i funkcjonowaniu Oddziału IEEE Gdańsk Computer Society (Chapter C16). Zaprezentowano skład Zarządu Oddziału w kolejnych kadencjach. Zwrócono uwagę między innymi na rolę Oddziału w promowaniu osiągnięć wybitnych naukowców, prezentujących swoje prace w ramach wykładów, odbywających się pod auspicjami Oddziału, jak też na współudział Oddziału w organizacji...
Year 2021
-
Acoustic Sensing Analytics Applied to Speech in Reverberation Conditions
PublicationThe paper aims to discuss a case study of sensing analytics and technology in acoustics when applied to reverberation conditions. Reverberation is one of the issues that makes speech in indoor spaces challenging to understand. This problem is particularly critical in large spaces with few absorbing or diffusing surfaces. One of the natural remedies to improve speech intelligibility in such conditions may be achieved through speaking...
-
AUTOMATYCZNE GENEROWANIE KOLEJNOŚCI LIST UTWORÓW MUZYCZNYCH
PublicationW niniejszym rozdziale przedstawiono przygotowanie algorytmu do automa-tycznego układania kolejności utworów muzycznych i zgrywającego je do postaci jednego, długiego miksu. Dzięki algorytmowi dobierane są utwory na podstawie analizy podobieństwa fragmentów końcowych i początkowych utworów. Podo-bieństwo to jest obliczane za pomocą odległości euklidesowej między wektorami parametrów wyznaczonymi przez autoenkoder oraz na podstawie...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublicationThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublicationThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublicationThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
PublicationThe goal of this research is to find a way of highlighting the acoustic differences between consonant phonemes of the Polish and Lithuanian languages. For this purpose, similarity matrices are employed based on speech acoustic parameters combined with a convolutional neural network (CNN). In the first experiment, we compare the effectiveness of the similarity matrices applied to discerning acoustic differences between consonant...
-
How Machine Learning Contributes to Solve Acoustical Problems
PublicationMachine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
KLASYFIKACJA EMOCJI W MUZYCE FILMOWEJ Z WYKORZYSTANIEM TESTÓW SUBIEKTYWNYCH
PublicationCelem referatu było przedstawienie testów odsłuchowych, w których zadaniem osób ankietowanych było przypisanie danego fragmentu muzycznego do odpowiedniej klasy emocji. Kolejne kroki eksperymentu obejmowały wybór muzyki filmowej do testów (baza Epidemic Sound), przygotowanie założeń ankiety oraz modelu emocji wykorzystywanych w testach odsłuchowych, jak również konstrukcj ˛e ankiety. Ankieta została zrealizowana za pomoc ˛a formularzy...
-
Mispronunciation Detection in Non-Native (L2) English with Uncertainty Modeling
PublicationA common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result...
-
Reinforcement Learning Algorithm and FDTD-based Simulation Applied to Schroeder Diffuser Design Optimization
PublicationThe aim of this paper is to propose a novel approach to the algorithmic design of Schroeder acoustic diffusers employing a deep learning optimization algorithm and a fitness function based on a computer simulation of the propagation of acoustic waves. The deep learning method employed for the research is a deep policy gradient algorithm. It is used as a tool for carrying out a sequential optimization process the goal of which is...
-
Skuteczność klasyfikacji gatunków muzycznych za pomocą sieci neuronowej w zależności od typu danych wejściowych
PublicationRozpoznawanie gatunku muzycznego jest jednym z podstawowych elementów inteligentnych systemów tworzenia automatycznych list muzyki. Platformy strumieniowe oferujące taką usługę wymagają rozwiązań, które umożliwią jak najdokładniej określić przynależność utworu do gatunku muzycznego. Zgodnie z aktualnym stanem wiedzy – najskuteczniejszym klasyfikatorem są sztuczne sieci neuronowe (w tym w wersji uczenia głębokiego), dla których...
seen 7954 times