Filters
total: 687
filtered: 635
Search results for: POSITRON MOLECULE SCATTERING
-
Theoretical study of highly-excited states of KRb molecule
PublicationSemi-empirical adiabatic potential energy curves of highly excited states of the KRb molecule are calculated as a function of the internuclear distance R over a wide range from 3 to 150 a0. The diatomic molecule is treated as an effective two-electron system by using the large core pseudopotentials and core polarization potentials. All calculations are performed by using the nonrelativistic CASSCF/MRCI method with accurate basis...
-
Cross sections for electron collision with pyridine [C5H5N] molecule
PublicationThe absolute grand -total cross section (TCS) for electron scattering from pyridine, C5H5N, molecules has been measured at impact energies from 0.6 to 300 eV in the linear electron-transmission experiment. The obtained TCS energy dependence appears to be typical for targets of high electric-dipole moment; the cross section generally decreases with rising energy, except for the 3–20 eV range, where a broad enhancement peaked near...
-
Bounds on isolated scattering number
PublicationThe isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.
-
Bounds on isolated scattering number
PublicationThe isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.
-
Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures
PublicationThe development of diffusion metasurfaces created new opportunities to elevate the stealthiness of combat aircraft. Despite the potential significance of metasurfaces, their rigorous design methodologies are still lacking, especially in the context of meticulous control over the scattering of electromagnetic (EM) waves through geometry parameter tuning. Another practical issue is insufficiency of the existing performance metrics,...
-
Theoretical studies of fragmentation processes of neutral and ionized furan molecule
PublicationThis PhD thesis focuses on the fragmentation mechanism of the furan molecule in the gas phase. The approach taken in this work comprised of three theoretical methodologies considering the dynamical, energetical and entropic aspects of the studied process. First, molecular dynamics simulations were performed. Next, the potential energy surfaces were explored at the DFT/B3LYP level of theory. Finally, a new statistical Microcanonical...
-
Charge dependence of fragmentation process induced by ion collisions with furan molecule
PublicationThe goal of this work is to describe the system evolution after ion-molecule interaction. We combine different quantum chemistry and statistical mechanics approaches in order to give extended description of the process. Herein we report on a recent study of the fragmentation mechanism of neutral, singly- and doubly-ionized furan molecule in the gas phase.
-
Determination of energy-transfer distributions in ionizing ion-molecule collisions
PublicationThe main objective of this study is to determine the energy transfer occuring in ion-molecule collisions. In order to solve this problem, we followed two approaches; the first one by validating a purely experimental method and the second one by testing a new theoretical model M3C (Microcanonical Metropolis Monte Carlo).
-
The adiabatic potentials of low-lying electronic states of the NaRb molecule
PublicationAdiabatic potential energy curves and spectroscopic constants have been calculated for the NaRb molecule. The results of ten states of the symmetry Σ+, six states of the symmetry Π, and two states of the symmetry Δ are obtained by the nonrelativistic quantum chemical method used with pseudopotentials describing the interaction of valence electrons with atomic cores. Analysis is based on a comparison with the results of other theoretical...
-
Water-mediated influence of a crowded environment on internal vibrations of a protein molecule
PublicationThe influence of crowding on the protein inner dynamics is examined by putting a single protein molecule close to one or two neighboring protein molecules. The presence of additional molecules influences the amplitudes of protein fluctuations. Also, a weak dynamical coupling of collective velocities of surface atoms of proteins separated by a layer of water is detected. The possible mechanisms of these phenomena are described....
-
Elastic scattering of electrons from chloroform
PublicationWe present experimental and theoretical cross sections for elastic electron scattering from CHCl3. This is an important target because of its relevance to environmental chemistry and the plasma etching industry as a source of chlorine radicals. The experimental results were obtained at incident electron energies ranging from 0.5 to 800 eV in the 10deg-130deg scattering angle range. Theoretically, the scattering cross sections in...
-
Application of the J-matrix method to multichannel scattering
PublicationIn this contribution we describe the multichannel extension to the nonrelativistic J-matrix method, and present differential cross sections for scattering of slow electrons from Argon atoms. Nonrelativistic phase shifts, then the S-matrix and the cross sections have been calculated using newly developed Fortran code, JMATRIX-MULTI.We applied the model Hartree-Fock potential as the scattering potential, which was truncated in the...
-
Magnetic switching of Kerker scattering in spherical microresonators
PublicationMagneto-optical materials have become a key tool in functional nanophotonics, mainly due to their ability to offer active tuning between two different operational states in subwavelength structures. In the long-wavelength limit, such states may be considered as the directional forward- and back-scattering operations, due to the interplay between magnetic and electric dipolar modes, which act as equivalent Huygens sources. In this...
-
A Stand for Measurement and Prediction of Scattering Properties of Diffusers
PublicationIn this paper we present a set of solutions which may be used for prototyping and simulation of acoustic scattering devices. A system proposed is capable of measuring sound field. Also a way to use an open source solution for simulation of scattering phenomena occurring in proximity of acoustic diffusers is shown. The result of our work are measurement procedure and a prototype of the simulation script based on FEniCS - an open source...
-
Elastic scattering of electrons by water: An ab initio study
PublicationIn this work we devise a theoretical and computational method to compute the elastic scattering of electrons from a non-spherical potential, such as in the case of molecules and molecular aggregates. Its main feature is represented by the ability of calculating accurate wave functions for continuum states of polycentric systems via the solution of the Lippmann-Schwinger equation, including both the correlation effects and multi-scattering...
-
Possible schemes of photoassociation processes in the KLi molecule with newly calculated potential energy curves
PublicationWe present four promising schemes for photoassociative formation of KLi molecule in its ground electronic state. Analysis is based on newly calculated adiabatic potentials supported by transition dipole moments and Franck-Condon factors.
-
Electronic excitation of H2O by positron impact
Publication -
Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice
PublicationUsing molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation...
-
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering
PublicationWe present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa, reduced scattering coefficient µs',...
-
Low energy elastic electron scattering from benzonitrile (C6H5CN)
PublicationWe present experimental differential elastic scattering cross sections (DCSs) for low energy electron scattering from benzonitrile along with integral and momentum-transfer cross sections that are determined from these DCSs. The measurements of DCSs are obtained using the relative flow method with helium as the standard gas, in a crossed electron-molecular gas beam arrangement. Our measurements are made at incident electron energies...
-
Low energy differential elastic electron scattering from trichloromethane
PublicationExperimental differential cross sections for low energy electron scattering from trichloromethane is measured utilizing a crossed electron-molecular beam experiment via the relative flow method, for the incident electron energies in the range of E = 0.5 eV-30 eV and the scattering angles in the range of θ = 10◦ − 130◦ .
-
Electron Elastic Collisions with C3F6 Molecule
PublicationObliczono różniczkowy i scałkowany przekrój czynny na zderzenia elektronu z molekułą C3F6 w zakresie średnich i wysokich energii (50-1000eV). Obliczenia wykonano stosując metodę atomów niezależnych. Stwierdzono dobrą zgodność z wynikami oszacowanymi na podstawie eksperymentu.
-
Methylation effect in e−— scattering on methyl-substituted ethylenes
PublicationMethylation effect has been observed and studied in electron-scattering from selected hydrocarbon molecules. In measured total cross section (TCS) functions we have noticed energy shifts and changes in the intensity of observed structures.
-
Calculation of electron scattering lengths on Ar, Kr, Xe, Rn and Og atoms
PublicationFocusing on the noble gases, we calculate the scattering potential using the Dirac-Coulomb Hamiltonian supplemented with a model polarization potential. We determine the scattering lengths using two methods, namely phase shifts for very small scattering energies and the shape of the wave function for zero scattering energy. We compare our theoretical electron scattering length results on Ar, Kr and Xe atoms with existing experimental...
-
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublicationWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Convergence of Monte Carlo algorithm for solving integral equations in light scattering simulations
PublicationThe light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo (MC) algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present implementation...
-
Scattering and Propagation Analysis for the Multilayered Structures Based on Field Matching Technique
PublicationA semi-analytical method is employed to the analysis of scattering and guiding problems in multilayer dielectric structures. The approach allows to investigate objects with arbitrary convex cross section and is based on the direct field matching technique involving the usage of the field projection at the boundary on a fixed set of orthogonal basis functions. For the scattering problems the scattered field in the far zone is calculated...
-
Low to intermediate energy elastic electron scattering from dichloromethane (CH2Cl2)
PublicationWe report a theoretical-experimental investigation of electron scattering by dichloromethane (CH2Cl2) in the low- and intermediate energy ranges. Experimental elastic differential cross sections (DCS), in the incident electron energy range of 0.5-800 eV and scattering angle range of 10°–130°, were measured using a crossed beam relative flow technique. Integral and momentum- transfer cross sections were determined from the experimental...
-
The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells
PublicationThe effect of anchoring group position and, in consequence, the orientation of the ruthenium dye molecule on titania surface on the performance of dye-sensitized solar cells has been studied intensively. Three model ruthenium sensitizing dyes bearing carboxylic anchoring group in ortho, meta or para position were synthesized and well characterized by spectroscopic, electrochemical, photophysical and photochemical measurements....
-
Linear and nonlinear Stark effect in a triangular molecule
Publication -
Electron collision with sulfuryl chloride (SO2Cl2) molecule
PublicationStosując liniową metodę transmisyjną zmierzono całkowite przekroje czynne (TCS) na zderzenie elektronów z drobinami SO2Cl2 w zakresie energii 0.5-150 eV. Stwierdzono obecność głębokiego minimum przy ok. 1.8 eV i szerokiego maksimum w pobliżu 9.5 eV. Przeprowadzono porównanie z dostępnymi wynikami dla innych związków zawierających grupę sulfonową.
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublicationVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Low energy differential elastic electron scattering from acetonitrile (CH3CN)
PublicationMeasurements of elastic differential cross sections for electron scattering from acetonitrile (CH3CN) have been performed utilizing a crossed electron-molecular beam experiment and with the relative flow method, for the incident electron energy range of 0.7 eV–30 eV and the scattering angle range of 10◦–130◦. These differential cross sections have been used to calculate the elastic integral and momentum- transfer cross sections,...
-
Positron-annihilation monitoring of reduction processes in conducting glasses.
PublicationW publikacji podano wyniki badań metodą anihilacji pozytronów szkieł bizmutowo-krzemianowych, bizmutowo-germanianowych i ołowiowo-krzemianowych. Stwierdzono istnienie defektów wywołanych redukcją w atmosferze wodoru. Przeprowadzono analizę głębokości występowania defektów oraz ich rozmiarów.
-
Simulating coherent light propagation in a random scattering materials using the perturbation expansion
PublicationMultiple scattering of a coherent light plays important role in the optical metrology. Probably the most important phenomenon caused by multiple scattering are the speckle patterns present in every optical imaging method based on coherent or partially coherent light illumination. In many cases the speckle patterns are considered as an undesired noise. However, they were found useful in various subsurface imaging methods such as...
-
CROSS SECTIONS CALCULATIONS FOR ELECTRON SCATTERING FROM RHODANINE AND CYANOACETIC ACID
PublicationCross sections for electron-impact ionization and for elastic electron scattering for rhodanine (C3H3NOS2) and cyanoacetic acid (C3H3NO2) have been calculated in wide impinging electron energy range.
-
JMATRIX - a package for relativistic J-matrix calculations in elastic scattering of electrons from model potentials
PublicationWe present a software package JMATRIX, consisting of two computer codes written in FORTRAN 95 and parallelized with OpenMP, implementing the so-called J-matrix method, applied to elastic scattering of electrons on the radial potential, vanishing faster than Coulomb one. In the J-matrix method, physical scattering problem is replaced by using well-defined model, which is solved analytically. Presented software implements both non-relativistic...
-
Yields and Time-of-Flight Spectra of Neutral High-Rydberg Fragments at the K Edges of the CO2 Molecule
PublicationWe have studied the production of neutral fragments in high-Rydberg (HR) states at the C 1s and O 1s edges of the CO2 molecule by performing two kinds of experiments. First, the yields of neutral HR fragments were measured indirectly by ionizing such fragments in a static electric field and by collecting resulting singly charged positive ions as a function of the photon energy. Such measurements reveal not only excitations below...
-
Scale transformations in model exchange potentials in low energy electron-atom scattering
PublicationModel exchange potentials are particularly interesting to account for the indistinguishability between the projectile and target electrons in electron-atom scattering in vacuo and plasma environments. It is well known that their performance is pretty satisfactory in the high energies but also that discrepancies from the results obtained with exact exchange are found toward the zero energy limit. In this article, we examine how...
-
Total cross section measurements for electron scattering from tin(IV) chloride (SnCl4)
PublicationTotal cross section for electron scattering from SnCl4 molecules has been measured for energies from 0.6 to 300 eV. Obtained results have been compared with total cross sections for electron scattering from other tetrachloride molecules: XCl4 where X=C, Si, Ge.
-
Recent total cross section measurements in electron scattering from molecules
PublicationThe grand-total cross sections (TCSs) for electron scattering from a range of molecules, measured over the period 2009-2019 in various laboratories, with the use of different electron transmission systems, are reviewed. Where necessary, the presented TCS data are also compared to earlier results. Collection of investigated molecular targets (biomolecules, biofuels, molecules of technological application,hydrocarbons) reflects their...
-
Low energy elastic scattering of electrons from hexafluoropropene (C3F6)
PublicationWe present cross sections from a joint experimental and theoretical study on elastic electron scattering from hexafluoropropene (C3F6) in the gas phase. The experimental results, using low energy electron spectroscopy, were obtained at incident electron energies of 0.5, 1, 1.5, 2, 3, 4, 5, 6, 10, 12, 15 and 20 eV, for scattering angles ranging from 10°to 130°. The theoretical method used in the computation of the integral, momentum...
-
Solution of coupled integral equations for quantum scattering in the presence of complex potentials
PublicationIn this paper, we present a method to compute solutions of coupled integral equations for quantum scattering problems in the presence of a complex potential. We show how the elastic and absorption cross sections can be obtained from the numerical solution of these equations in the asymptotic region at large radial distances.
-
Elastic electron scattering and vibrational excitation of isoxazole molecules in the energy range from 2 to 20 eV
PublicationDifferential cross sections for elastic electron scattering and the excitation of the C-H vibrational modes of isoxazole molecules were measured in the energy range from 2 to 20 eV and over the scattering angle range from 10◦ to 180◦. The cross sections at the scattering angles of and above 90◦ were accessible with the use of a magnetic angle changer. The differential cross sections were integrated to yield integral and momentum...
-
Theoretical and experimental study on scattering of low-energy electrons by dimethyl and diethyl ethers
PublicationWe report a joint theoretical and experimental investigation on low-energy electron scattering by dimethyl and diethyl ethers. The experimental elastic differential cross sections were measured at impact energies from 1 eV up to 30 eV and scattering angle range of 10◦ to 130◦. Theoretical elastic differential, integral and momentum-transfer cross sections are calculated at impact energies up to 30 eV, employing the Schwinger multichannel...
-
Dehydrogenation in electron-induced dissociative ionization of pyridine molecule
PublicationThe electron-impact dissociative ionization of pyridine has been investigated using mass spectrometry. Thirty-two well-resolved mass peaks have been identified in the cation mass spectra and assigned to the most likely ionic molecular fragments. The new sixteen ionic fragments' appearance energies have been determined, and sixteen others remeasured. The total cross-section for electron-impact ionization of pyridine has been measured...
-
Electron scattering from 2-methyl–1,3-butadiene,C5H8, molecules: Role of methylation
PublicationWe report cross-section results from experimental and theoretical investigations into electron collisions with the 2-methyl–1,3-butadiene [C5H8] molecule. The current results are compared with our previous results for the 1,3-butadiene [C4H6] molecule, a structural homologue of 2-methyl–1,3-butadiene, to investigate how the methylation (the substitution of hydrogen atom by a methyl group) affects the shape and/or magnitude of the...
-
Efficient Fabry-Perot Open Resonator Analysis by the use of a Scattering Matrix Method
PublicationIn this paper a comparative study of the computational efficiency of two modeling methods applied to the analysis of the plano- and double-concave Fabry-Perot open resonators is presented. In both numerical approaches, a scattering matrix method was applied, which allows splitting the analysis of the resonator into several sections, including the one with a spherical mirror, which requires the largest computing resources. Two modeling...
-
Total cross section for low-energy electron scattering from formic acid, (HCOOH), molecules
PublicationTotal cross section (TCS) for low-energy electron scattering from formic acid molecules has been measured using electrostatic electron spectrometer working in linear transmission mode. Two local maxima centered around 1.7 eV and 7.8 eV have been observed and associated with resonant scattering processes.
-
Positron Annihilation Studies of Silicon Oxides and Oxygen Precipitates in Silicon
PublicationTechniki pozytonowe dają możliwości badania defektów i zmian strukturalnych nie obserwowanych innymi metodami. W tej pracy zastosowano 3 różne techniki pozytonowe do badania zmian strukturalnych i tworzenia wydzieleń SiOx w krzemie.