Filters
total: 159
filtered: 142
Search results for: SIZE OPTIMIZATION
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublicationUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublicationDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
On Design Optimization of Miniaturized Microscrip Dual-Band Rat-Race Coupler with Enhanced Bandwidth
PublicationIn the paper, a novel topology of a miniaturized wideband dual-band rat-race coupler has been presented. Small size of the circuit has been obtained by meandering transmission lines of the conventional circuit. At the same time, the number of independent geometry parameters has been increased in order to secure sufficient circuit flexibility in the context of its design optimization for dual-band operation. Optimum dimensions of...
-
Optimization-Based High-Frequency Circuit Miniaturization through Implicit and Explicit Constraint Handling: Recent Advances
PublicationMiniaturization trends in high-frequency electronics have led to accommodation challenges in the integration of the corresponding components. Size reduction thereof has become a practical necessity. At the same time, the increasing performance demands imposed on electronic systems remain in conflict with component miniaturization. On the practical side, the challenges related to handling design constraints are aggravated by the...
-
Numerically Efficient Miniaturization-Oriented Optimization of an Ultra-Wideband Spline-Parameterized Antenna
PublicationDesign of ultra-wideband radiators for modern handheld applications is a challenging task that involves not only selection of an appropriate topology, but also its tuning oriented towards balancing the electrical performance and size. In this work, a low-cost design of a compact, broadband, spline-parameterized monopole antenna has been considered. The framework used for the structure design implements trust-region-based methods,...
-
Globalized Knowledge-Based Simulation-Driven Antenna Miniaturization Using Domain-Confined Surrogates and Dimensionality Reduction
PublicationDesign of contemporary antenna systems encounters multifold challenges, one of which is a limited size. Compact antennas are indispensable for the new fields of application such as inter-net of things or 5G/6G mobile communication. Still, miniaturization generally undermines elec-trical and field performance. When attempted through numerical optimization, it turns into a constrained problem with costly constraints requiring electromagnetic...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications
PublicationDesign of ultra-wideband antennas for in-door localization applications is a challenging task. It involves development of geometry that maintains appropriate balance between the size and performance. In this work, a topologically-flexible monopole has been generated using a stratified framework which embeds a gradient-based trust-region (TR) optimization algorithm in a meta-loop that gradually increases the structure dimensionality....
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Modeling and optimization of chemical-treated torrefaction of wheat straw to improve energy density by response surface methodology
PublicationToday, torrefaction is important technique for extending the potential of biomass for improvement of energy density. The independent variables investigated for torrefaction study were temperature, retention time, acid concentration, and particle size. The experiment was designed by central composite design (CCD) method using design expert (version 11). The three dependent variables were higher heating value (HHV), energy enhancement...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublicationIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
High-Efficacy Global Optimization of Antenna Structures by Means of Simplex-Based Predictors
PublicationDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublicationSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublicationSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublicationIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
Miniaturized uniplanar triple-band slot dipole antenna with folded radiator
PublicationA miniaturized uniplanar slot dipole for triple-frequency operation is presented. The antenna consists of a folded slot radiator with an increased number of degrees of freedom that allow for efficient size reduction. Rigorous electromagnetic (EM)-driven design optimization is applied in order to achieve the smallest possible size while maintaining acceptable levels of antenna reflection at the required operating frequencies. The...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Tolerance-Aware Optimization of Microwave Circuits by Means of Principal Directions and Domain-Restricted Metamodels
PublicationPractical microwave design is most often carried out in the nominal sense. Yet, in some cases, performance degradation due to uncertainties may lead to the system failing to meet the prescribed specifications. Reliable uncertainty quantification (UQ) is therefore important yet intricate from numerical standpoint, especially when the circuit at hand is to be evaluated using electromagnetic (EM) simulation tools. Tolerance-aware...
-
A robust design of a numerically demanding compact rat-race coupler
PublicationA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
Low-cost multi-objective design of compact microwave structures using domain patching
PublicationA good compromise between size and electrical performance is an important design consideration for compact microwave structures. Comprehensive information about size/performance trade-offs can be obtained through multi-objective optimization. Due to considerable electromagnetic (EM) cross-couplings in highly compressed layouts, the design process has to be conducted at the level of high-fidelity EM analysis which is computationally...
-
Reduced-cost constrained miniaturization of wideband antennas using improved trust-region gradient search with repair step
PublicationIn the letter, an improved algorithm for electromagnetic (EM)-driven size reduction of wideband antennas is proposed. Our methodology utilizes variable-fidelity EM simulation models, auxiliary polynomial regression surrogates, as well as multi-point response correction. The constraint handling is implicit, using penalty functions. The core optimization algorithm is a trust-region gradient search with a repair step added in order...
-
Exergy Losses in the Szewalski Binary Vapor Cycle
PublicationIn this publication, we present an energy and exergy analysis of the Szewalski binary vapor cycle based on a model of a supercritical steam power plant. We used energy analysis to conduct a preliminary optimization of the cycle. Exergy loss analysis was employed to perform a comparison of heat-transfer processes, which are essential for hierarchical cycles. The Szewalski binary vapor cycle consists of a steam cycle bottomed with...
-
FLUID BED COATING OF MINITABLETS AND PELLETS WITH OPTIMIZATION OF THE PROCESS BASED ON TAGUCHI METHOD
PublicationSmall particles like pellets are coated in fluid bed systems. This method can be also feasible for minitablets but the selection of optimal process parameters is complicated. The aim of the research was to optimize the coating process for minitablets and to compare the conditions required for pellets. Minimum fluidization velocities (umf) for 2.0 and 2.5 mm minitablets and 0.7-0.8 mm or 1.0-1.25 mm pellets were determined experimentally....
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublicationThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
EM‐driven constrained miniaturization of antennas using adaptive in‐band reflection acceptance threshold
PublicationNumerical optimization of geometry parameters is a critical stage of the design process of compact antennas. It is also challenging because size reduction is constrained by the necessity of fulfilling imposed electrical performance requirements. Furthermore, full‐wave electromagnetic (EM) analysis needs to be used for reliable performance evaluation of the antenna structure, which is computationally expensive. In this paper, an...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...
-
The Simulation of Activated Sludge System for Optimization of Predictive Aeration at Large WWTP
PublicationEffective use of biodegradable substrates as an internal carbon sources (ICS) for denitrification and EBPR and predicting performance of aeration systems during nitrification in activated sludge bioreactors, may be useful in realization the sustainable development by potentially saving energy consumption at WWTPs. A large number of WWTPs use activated sludge systems with an integrated removal of carbon, nitrogen and phosphorus...
-
Low-cost multi-criterial design optimization of compact microwave passives using constrained surrogates and dimensionality reduction
PublicationDesign of contemporary microwave circuits is a challenging task. Typically, it has to take into account several performance requirements and constraints. The design objectives are often conflicting and their simultaneous improvement may not be possible; instead, compromise solutions are to be sought. Representative examples are miniaturized microwave passives where reduction of the circuit size has a detrimental effect on its electrical...
-
On geometry parameterization for simulation-driven design closure of antenna structures
PublicationFull-wave electromagnetic (EM) simulation tools have become ubiquitous in antenna design, especially final tuning of geometry parameters. From the reliability standpoint, the recommended realization of EM-driven design is through rigorous numerical optimization. It is a challenging endeavor with the major issues related to the high computational cost of the process, but also the necessity of handling several objectives and constraints...
-
Nested Kriging with Variable Domain Thickness for Rapid Surrogate Modeling and Design Optimization of Antennas
PublicationDesign of modern antennas faces numerous difficulties, partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities (circular polarization, pattern diversity, band-notch operation), but also constraints imposed upon the physical size of the radiators. Conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise...
-
Testing Stability of Digital Filters Using Optimization Methods with Phase Analysis
PublicationIn this paper, novel methods for the evaluation of digital-filter stability are investigated. The methods are based on phase analysis of a complex function in the characteristic equation of a digital filter. It allows for evaluating stability when a characteristic equation is not based on a polynomial. The operation of these methods relies on sampling the unit circle on the complex plane and extracting the phase quadrant of a function...
-
Novel structure and EM-driven design of miniaturized microstrip rat-race coupler
PublicationIn this paper, a novel structure and design procedure of a miniaturized microstrip rat-race coupler (RRC) is described. Small size of the RRC is achieved by folding the transmission lines of the conventional circuit into its interior, as well as by implementation of the structure on three layers. The final size of the coupler realized for the operating frequency of 1 GHz is only 220 mm2, which gives over 95% footprint reduction...
-
Looking for a minimum exergy destruction in hierarchical cycle
PublicationThe paper presents results of energy analysis, complemented with an exergy balance, of hierarchical thermodynamic cycle. Proposed cycle is a binary vapour cycle based on a model of real supercritical steam power plant. Energy analysis is used to preliminary optimization of the cycle and the exergy losses analysis is proposed to perform optimization of heat transfer processes, which are essential for hierarchical cycles. Proposed...
-
Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching
PublicationFinding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublicationA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Reduced-cost optimization-based miniaturization of microwave passives by multi-resolution EM simulations for internet of things and space-limited applications
PublicationStringent performance specifications along with constraints imposed on physical dimensions, make the design of contemporary microwave components a truly onerous task. In recent years, the latter demand has been growing in importance, with the innovative application areas such as Internet of Things coming into play. The need to employ full-wave electromagnetic (EM) simu-lations for response evaluation, reliable yet CPU heavy, only...
-
A structure and design of a novel compact UWB MIMO antenna
PublicationIn the paper, a concept and design procedure of a novel compact MIMO slot antenna is presented. In order to achieve a better filling of available space, individual antennas are constrained to a triangular shape and optimized for a reduced size. The MIMO structure is then assembled using the two of previously designed antennas in orthogonal arrangement. Surrogate-assisted numerical optimization involving variable-fidelity electromagnetic...
-
Depth Images Filtering In Distributed Streaming
PublicationIn this paper, we propose a distributed system for point cloud processing and transferring them via computer network regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid, Radial Outliner Remover, Statistical Outlier Removal and Pass Through....
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublicationAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Rapid multi-objective design of integrated on-chip inductors by means of Pareto front exploration and design extrapolation
PublicationIdentification of the best trade-offs between conflicting design objectives allows for making educated design decisions as well as assessing suitability of a given component or circuit for a specific application. In case of inductors, the typical objectives include maximization of the quality factor and minimization of the layout area, as well as maintaining a required inductance at a given operating frequency. This work demonstrates...
-
DEPTH IMAGES FILTERING IN DISTRIBUTED STREAMING
PublicationIn this paper we discuss the comparison of point cloud filters focusing on their applicability for streaming optimization. For the filtering stage within a stream pipeline processing we evaluate three filters: Voxel Grid, Pass Through and Statistical Outlier Removal. For the filters we perform series of the tests aiming at evaluation of changes of point cloud size and transmitting frequency (various fps ratio). We propose a distributed...
-
Low-Cost Unattended Design of Miniaturized 4 × 4 Butler Matrices with Nonstandard Phase Differences
PublicationDesign of Butler matrices dedicated to Internet of Things and 5th generation (5G) mobile systems—where small size and high performance are of primary concern—is a challenging task that often exceeds capabilities of conventional techniques. Lack of appropriate, unified design approaches is a serious bottleneck for the development of Butler structures for contemporary applications. In this work, a low-cost bottom-up procedure for...
-
Rapid multi-objective simulation-driven design of compact microwave circuits
PublicationA methodology for rapid multi-objective design of compact microwave circuits is proposed. Our approach exploits point-by-point Pareto set identification using surrogate-based optimization techniques, auxiliary equivalent circuit models, and space mapping as the major model correction method. The proposed technique is illustrated and validated through the design of a compact rat-race coupler. A set of ten designs being trade-offs...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
Characterization of Defects Inside the Cable Dielectric With Partial Discharge Modeling
PublicationThe continuous monitoring of power system devices is an important step toward keeping such capital assets safe. Partial discharge (PD)-based measurement tools provide a reliable and accurate condition assessment of power system insulations. It is very common that voids or cavities exist in every solid dielectric insulation medium. In this article, different voids are modeled and analyzed using an advanced finite element (FE)-based...
-
Constructing a map of an anonymous graph: applications of universal sequences
PublicationWe study the problem of mapping an unknown environmentrepresented as an unlabelled undirected graph. A robot (or automaton)starting at a single vertex of the graph G has to traverse the graph and return to its starting point building a map of the graph in the process. We are interested in the cost of achieving this task (whenever possible) in terms of the number of edge traversal made by the robot. Another optimization criteria...
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublicationPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...