Filters
total: 25
filtered: 24
Chosen catalog filters
Search results for: INTERCALATION
-
Intercalation of imidazoacridinones to DNA and its relevance to cytotoxicand antitumor activity
Publication.
-
Photoinduced K+ Intercalation into MoO3/FTO Photoanode—the Impact on the Photoelectrochemical Performance
PublicationIn this work, thin layers of MoO3 were tested as potential photoanodes for water splitting. The influence of photointercalation of alkali metal cation (K+) into the MoO3 structure on the photoelectrochemical properties of the molybdenum trioxide films was investigated for the first time. MoO3 thin films were synthesized via thermal annealing of thin, metallic Mo films deposited onto the FTO substrate using a magnetron sputtering...
-
Influence of chemically prepared H2SO4-graphite intercalation compound (GIC) precursor on parameters of exfoliated graphite (EG) for oil sorption from water
Publication -
Intercalation complex of imidazoacridinone C-1311, a potential anticancer drug, with DNA helix d(CGATCG)2: stereostructural studies by 2D NMR spectroscopy.
PublicationImidazoacridinone C-1311 (Symadex®) is a powerful antitumor agent, which successfully made its way through the Phase I clinical trials and has been recommended for Phase II few a years ago. It has been shown experimentally that during the initial stage of its action C-1311 forms a relatively stable intercalation complex with DNA, yet it has shown no base-sequence specificity while binding to DNA. In this paper, the d(CGATCG)2:C-1311...
-
The Product of Matrix Metalloproteinase Cleavage of Doxorubicin Conjugate for Anticancer Drug Delivery: Calorimetric, Spectroscopic, and Molecular Dynamics Studies on Peptide–Doxorubicin Binding to DNA
PublicationMatrix metalloproteinases (MMPs) are extracellular matrix degradation factors, promoting cancer progression. Hence, they could provide an enzyme-assisted delivery of doxorubicin (DOX) in cancer treatment. In the current study, the intercalation process of DOX and tetrapeptide-DOX, the product of the MMPs' cleavage of carrier-linked DOX, into dsDNA was investigated using stationary and time-resolved fluorescence spectroscopy, UV-Vis...
-
C-1311 (Symadex), a potential anti-cancer drug, intercalates into DNA between A and G moieties. NMR-derived and MD-refined stereostructure of the d(GAGGCCTC) 2 :C-1311 complex
PublicationImidazoacridinone C-1311 (Symadex®) is an antitumor agent which has been recommended for Phase II clinical trials a few years ago. Previously, it was shown experimentally that during the initial stage of its action C-1311 forms stable intercalation complexes with DNA duplexes. Herein, a NMR-derived stereostructure of d(GAGGCCTC)2:C-1311 complex was reported. The ligand was found locating itself between A and G moieties, forming...
-
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
PublicationMXenes, a novel large family of 2D transition metal carbides, carbonitrides and nitrides are currently a “hot topic” in science due to their several fascinating physical and chemical properties. It follows from a rich diversity of their elemental compositions and chemical functionalities. MXenes can form composites with many substances, including polymers or metal oxides, which allows to effective “tune” MXene characteristics to...
-
Influence of temperature and interactions with ligands on dissociation of dsDNA and ligand-dsDNA complexes of various types of binding : an electrochemical study.
PublicationSeveral medicinally important compounds that bind to dsDNA strands via intercalation (C-1311, C-1305, EtBr), major groove binding (Hoechst 33258) and covalent binding (cis-Pt) were examined. The obtained results suggest that both the transfer of conformation B to C and the denaturation process, for the ligand-dsDNA complexes, except for covalently bound cis-Pt, took place at higher temperatures compared to the unbound helix. Furthermore,...
-
Li nucleation on the graphite anode under potential control in Li-ion batteries
PublicationApplication of Li-ion batteries in electric vehicles requires improved safety, increased lifetime and high charging rates. One of the most commonly used intercalation anode material for Li-ion batteries, graphite, is vulnerable to Li nucleation, a side reaction which competes with the intercalation process and leads to loss of reversible capacity of the battery, ageing and short-circuits. In this study, we deploy a combined grand...
-
A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix
PublicationLithium-ion batteries (LIBs) are widely used all over the world. The LIBs belong to a renewable energy source and energy storage devices. The increase in energy demand causes that new materials of higher energy and higher power densities are still under investigation. Herein, we compare electrochemical properties of bismuth vanadate (BiVO4) embedded and not embedded into carbonaceous matrix as an anode material along with structural...
-
To what extent can hyperelastic models make sense the effect of clay surface treatment on the mechanical properties of elastomeric nanocomposites?
PublicationThe poor knowledge about nonlinear mechanical behavior of elastomer nanocomposites arises from the incomplete information on the interface. Application of hyperelastic models provides more insights into the nature and the situation of interaction between the elastomeric matrix and nanofillers. The current work seeks to address the effect of interphase strength on tensile properties of the elastomer nanocomposites under large deformations....
-
S-Shaped Suppression of the Superconducting Transition Temperature in Cu-Intercalated NbSe2
Publication2H-NbSe2 is the prototype and most frequently studied of the well-known transition metal dichalcogenide (TMDC) superconductors. As 2H-NbSe2 is widely acknowledged as a conventional superconductor, its transition temperature to the superconducting state (Tc) is 7.3 K, a Tc that is substantially higher than those seen for the majority of TMDCs, where Tc values between 2 and 4 K are the norm. Here we report the intercalation of Cu...
-
The influence of nanostructures size on V2O5 electrochemical properties as cathode materials for lithium ion battery
PublicationIn this paper, V2O5 nanostructures with a size depending on the annealing temperature are successfully synthesized by a sol-gel method. The crystal structure and morphology of samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SEAD) and scanning electron microscopy (SEM), respectively. Electrochemical testing such...
-
Mechanisms of Li deposition on graphite anodes: surface coverage and cluster growth
PublicationLi plating on the anode is a side reaction in Li-ion batteries which competes with Li intercalation and leads to loss of capacity. Growth of Li clusters into dendrites is a potential safety hazard for batteries which can lead to internal short-circuit and fires. We consider two possibilities of Li deposition on the surface of graphite anode: deposition of Li+ ions uniformly on the surface and deposition of clusters of metallic...
-
Controlling crystallites orientation and facet exposure for enhanced electrochemical properties of polycrystalline MoO3 films
PublicationThis study focuses on the development and optimization of MoO3 films on commercially available FTO substrates using the pulsed laser deposition (PLD) technique. By carefully selecting deposition conditions and implementing post-treatment procedures, precise control over crystallite orientation relative to the substrate is achieved. Deposition at 450 °C in O2 atmosphere results in random crystallite arrangement, while introducing...
-
Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition
PublicationOne way to limit the negative effects of anti-tumor drugs on healthy cells is targeted therapy employing functionalized drug carriers. Here we present a biocompatible and stable nanoconjugate of transferrin anchored to Ag-In-Zn-S quantum dots modified with 11-mercaptoundecanoic acid (Tf-QD) as a drug carrier versus typical anticancer drug, doxorubicin. Detailed investigations of Tf-QD nanoconjugates without and with doxorubicin...
-
Targeting yeast topoisomerase II by imidazo and triazoloacridinone derivatives resulting in their antifungal activity
PublicationFungal pathogens are considered as serious factors for deadly diseases and are a case of medical concern. Invasive fungal infections also complicate the clinical course of COVID-19, leading to a significant increase in mortality. Furthermore, fungal strains' multidrug resistance has increased the demand for antifungals with a different mechanism of action. The present study aimed to identify antifungal compounds targeting yeast...
-
Structure of Microemulsion Formulated with Monoacylglycerols in the Presence of Polyols and Ethanol
PublicationThe influence of polyols as cosurfactants (propylene glycol PG; glycerol G) and short chain alcohol as a cosolvent (ethanol EtOH) on the formation and solubilization capacity of the systems: hexadecane/monoacylglycerols (MAG)/polyol/water:EtOH, at 60C, was investigated. Electrical conductivity measurement, and the DSC method were applied to determine the structure and type of microemulsions formed. The dimension of the droplets...
-
Starch-clay nanocomposite films
PublicationStarch is a natural polymer which, due to its renewability, biodegrability, availability and a relatively low cost, has a high potential for applications in biodegradable materials. However, because of its hydrophilic nature, the number of commercially available starch-based products is still limited. Recently, starch-based nanocomposites with the addition of clay minerals as nanofillers have given rise to large-scale improvements...
-
A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes
PublicationGraphite negative electrodes are unbeaten hitherto in lithium-ion batteries (LiBs) due to their unique chemical and physical properties. Thus, the increasing scarcity of graphite resources makes smart recycling or repurposing of discarded graphite particularly imperative. However, the current recycling techniques still need to be improved upon with urgency. Herein a facile and efficient hydrometallurgical process is reported to...
-
Problem of aggregation in dye-DNA interaction, calorimetry studies
PublicationNucleic acids are the biological target for many antimicrobial, antitumor and antiviral drugs. Ligand-DNA interactions can be classified into two major categories: 1. covalent binding, which can provide to intermolecular adducts, 2. physico-chemical interactions, which can be divided into intercalation (e.g. adriamycin) or groove binding (e.g. dystamycin). There are several methods to investigate interactions between drug and DNA....
-
Hybrid electrode materials for fast performance devices
PublicationEnergy storage devices such as Electrochemical Double Layer Capacitors and other types of the electrochemical capacitors require chemically stable, non-soluble, electrochemically active electrode materials compatible with appropriate electrolytes. Factors which determine their applicability are derived from so called electrochemical window of electroltes, nature of charge accumulation and their kinetics. On the other hand technological...
-
Nickel phase deposition on V2CTx/V2AlC as catalyst precursors for a dry methane reforming: The effect of the deposition method on the morphology and catalytic activity
PublicationDry reforming of methane (DRM) is a promising alternative technology for the production of syngas with simultaneous utilization of two main greenhouse gases (CH4, CO2). However, DRM technology is still an industrially immature process due to the lack of stable and active catalyst. Therefore, the search for new catalytic materials is of great research interest. Recently, MAX and MXenes materials are increasingly being tested as...
-
A strong preference for the TA/TA dinucleotide step discovered for an acridine-based, potent antitumor dsDNA intercalator, C-1305: NMR-driven structural and sequence-specificity studies
PublicationTriazoloacridinone C-1305, a potent antitumor agent recommended for Phase I clinical trials, exhibits high activity towards a wide range of experimental colon carcinomas, in many cases associated with complete tumor regression. C-1305 is a well-established dsDNA intercalator, yet no information on its mode of binding into DNA is available to date. Herein, we present the NMR-driven and MD-refined reconstruction of the 3D structures...