Filters
total: 79
filtered: 75
Chosen catalog filters
Search results for: PATCH SIZE
-
The effects of forest patch size and ownership structure on tree stand characteristics in a highly deforested landscape of central Poland
Publication -
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublicationA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size deter-mination
PublicationIn this paper, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement...
-
Patch size setup and performance/cost trade-offs in multi-objective EM-driven antenna optimization using sequential domain patching
PublicationPurpose This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures. Design/methodology/approach A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal...
-
Broadband Microstrip Patch Antenna with Reduced Transversal Size
PublicationW pracy przedstawiono propozycję anteny szerokopasmowej o ograniczonych wymiarach poprzecznych. Szerokopasmowość uzyskano poprzez stosowanie grubego podłoża i sprzężenia elektromagnetycznego poprzez dwie szczeliny sprzęgające. Wymiar poprzeczny łaty zredukowano poprzez zastosowanie szczeliny typu H. Antena została zaprojektowana i wykonana, zaś zmierzone pasmo wyniosło 29% dla WFS <1.5. Stwierdzono jednak, że charakterystyki...
-
IFF/SSR rectangular patch antenna with reduced transversal size
PublicationW artykule przedstawiono antenę mikropaskową dla systemów IFF/SSR, zasilaną poprzez szczelinę typu H. Zastosowanie tego typu szczeliny pozwoliło na 36-procentową redukcję wymiaru poprzcznego anteny,co jest szczególnie istotne ze względu na potencjalne zastosowanie anteny w szykach.Pomierzone parametry eektryczne anteny to: VSWR < 1.5; stosunek polaryzacji ortogonalnej do właściwej < 30 dB w obu płaszczyznach;zysk > 7 dBi.
-
Bandwidth-size design trade-offs for compact spline-parameterised patch couplers by means of electromagnetic-driven multi-objective optimisation
PublicationBroad bandwidth and small size are the key performance figures for contemporary microwave couplers. These requirements are conflicting, i.e. improvement of one generally leads to degradation of the other assuming fixed topology of the circuit at hand. From a designer's perspective, the knowledge about available design trade-offs is indispensable as it permits for tailoring the circuit for particular applications as well as comparing...
-
Uncertainty Quantification of Additive Manufacturing Post-Fabrication Tuning of Resonator-Based Microwave Sensors
PublicationReconfigurability, especially in terms of the ability of adjusting the operating frequency, has become an important prerequisite in the design of modern microwave components and systems. It is also pertinent to microwave sensors developed for a variety of applications such as characterization of material properties of solids or liquids. This paper discusses uncertainty quantification of additive-manufacturing-based post-fabrication...
-
Simulation-driven size-reduction-oriented design of multi-band antennas by means of response features
PublicationThis study addresses the problem of explicit size reduction of multi-band antennas by means of simulation-driven optimisation. The principal difficulty of electromagnetic (EM)-based miniaturisation of multi-band antennas is that several resonances have to be controlled independently (both in terms of their frequency allocation and depth) while attempting to reduce physical dimensions of the structure at hand. The design method...
-
Resonator-Loaded Waveguide Notch Filters with Broad Tuning Range and Additive-Manufacturing-Based Operating Frequency Adjustment Procedure
PublicationThis article presents a new class of ring-resonator-loaded waveguide notch filters with a broad tuning range, low cost, and improved performance. The proposed approach employs a comple-mentary asymmetric split ring resonator coupled to a microstrip transmission line and excited in a rectangular waveguide. An equivalent circuit model is proposed to explain the working principle of the proposed notch filter. The adjustment of the...
-
Experimental Investigations of Fracture Process Using DIC in Plain and Reinforced Concrete Beams under Bending
PublicationThe fracture behaviour of concrete and reinforced concrete beams under quasi-static three-point bending was comprehensively investigated with experiments at laboratory scale. The eight various concrete mixes were tested. The influence of the shape, volume and size of aggregate particles and reinforcement on concrete fracture under bending was studied. Displacements on the surface of concrete beams were measured by means of the...
-
A Series-Inclined-Slot-Fed Circularly Polarized Antenna for 5G 28-GHz Applications
PublicationThis letter presents the design of a single-point-fed, geometrically simple circularly polarized (CP) antenna for 28 GHz Ka-band applications. The proposed antenna is based on a straight microstrip line printed on one side and coupled with the nearly square patches through a 45-degree inclined V-shape slot aperture on the other side. In order to generate circular polarization, the fundamental radiating mode is degenerated at a...
-
Series-Slot-Fed Circularly Polarized Multiple-Input-Multiple-Output Antenna Array Enabling Circular Polarization Diversity for 5G 28-GHz Indoor Applications
PublicationIn this paper, a four-element circularly polarized series-slot-fed multiple-input-multiple-output (MIMO) antenna array with circular polarization diversity is presented. The proposed design utilizes a combination of 45-degree inclined slots and a straight microstrip line feeding technique. The two antennas are designed to operate with the opposite sense of circular polarization (CP). CP is achieved by placing a patch of just about...
-
A Compact Self-Hexaplexing Antenna Implemented on Substrate-Integrated Rectangular Cavity for Hexa-Band Applications
PublicationThis brief introduces a novel architecture of a compact self-hexaplexing antenna (SHA) implemented on a substrate-integrated rectangular cavity (SIRC) for hexa-band applications. The proposed SHA is configured by using an SIRC resonator, two Pi-shaped slots (PSSs), and six 50Ω microstrip feedlines. The PSSs are connected back-to-back and loaded on top of the SIRC resonator to produce six patch radiators (PRs). The PRs are excited...
-
Compact Electromagnetic Lens Antennas Using Cascaded Metasurfaces for Gain Enhancement and Beam Steering Applications
PublicationElectromagnetic (EM) lens antenna designs using cascaded metasurfaces for gain enhancement and beam steering applications are proposed. Two different lens aperture designs are proposed and populated with aperiodic unit cells of size 0.2λo × 0.2λo. In lens Design 1, the unit cells of different phases are distributed in concentric circular zones, whereas in lens Design 2, the unit cells of different phases are distributed in vertical...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublicationMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
Millimeter Wave Negative Refractive Index Metamaterial Antenna Array
PublicationIn this paper, a novel negative refractive index metamaterial (NIM) is developed and characterized. The proposed metamaterial exhibits negative effective permittivity (εeffe) and negative effective permeability (µeffe) at millimeter wave frequency of 28GHz. This attractive feature is utilized to enhance the gain of a microstrip patch antenna (MPA). Two thin layers of 5 5 subwavelength unit cell array of NIM are placed above a...
-
Circularly Polarized Antenna Array design with the Potential of Gain-Size Trade-off and Omnidirectional Radiation for Millimeter-Wave Small Base Station Applications
PublicationThis paper presents the design and validation of a slot-patch-hybrid circularly polarized antenna array for 28 GHz millimeter (mm) wave (mm-wave) applications. The proposed design has a simple geometry that facilitates the fabrication process, which is otherwise a challenging task due to the sub-mm dimensions of the circuit in the mm-wave band. In the proposed structure, aperture-coupled series slot-fed array is utilized to excite...
-
Design and Experimental Validation of a Metamaterial-Based Sensor for Microwave Imaging in Breast, Lung, and Brain Cancer Detection
PublicationThis study proposes an innovative geometry of a microstrip sensor for high-resolution microwave imaging (MWI). The main intended application of the sensor is early detection of breast, lung, and brain cancer. The proposed design consists of a microstrip patch antenna fed by a coplanar waveguide with a metamaterial layer-based lens implemented on the back side, and an artificial magnetic conductor (AMC) realized on as a separate...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching
PublicationFinding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective...
-
Dual-band Millimetre Wave MIMO Antenna with Reduced Mutual Coupling Based on Optimized Parasitic Structure and Ground Modification
PublicationIn this study, a high-isolation dual-band (28/38 GHz) multiple-input–multiple-output (MIMO) antenna for 5G millimeter-wave applications is presented. The antenna consists of two interconnected patches. The primary patch is connected to the inset feed, while the secondary patch is arc-shaped and positioned over the main patch, opposite to the feed. Both patches function in the lower 28 GHz band, while the primary patch is accountable...
-
Resonance Frequency Calculation of Spherical Microstrip Structure Using Hybrid Technique
PublicationIn this paper the spherical microstrip structure is considered. The structure is composed of a metallic patch with an arbitrary shape placed on a dielectric coated metallic sphere. In the analysis the hybrid technique is utilized. In this approach the finite-difference technique is applied in a cavity model to determine the current basis functions on the patch. Next, using method of moments, the resonance frequency of the structure...
-
On the approximation of the UWB dipole elliptical arms with stepped-edge polygon
PublicationA simple method of approximation of the ellipticalpatch with stepped-edge polygon is proposed as an introductionto wider studies over the planar ultrawideband (UWB) antennas.The general idea is to replace the elliptical patch with an equivalentpolygonal patch, with minimum loss in the performance. Theprinciples of the proposed method are presented in this letter, aswell as the results of performed numerical studies and its experimentalverification....
-
EM-driven topology evolution for bandwidth enhancement of hybrid quadrature patch couplers
PublicationA broad operational bandwidth is one of the key performance figures of hybrid patch couplers. Due to the lack of systematic design procedures, bandwidth enhancement is normally obtained through manual modifications of the structure geometry. In this work, an optimization-based topology evolution for EM-driven design of patch couplers with enhanced bandwidth has been proposed. The method exploits a novel spline-based EM model where...
-
Modal Analysis of Planar Elliptical Resonator Deposited on Unshielded Dielectric Slab
PublicationModal analysis of isolated open planar elliptical patch placed on dielectric slab is presented in the paper. It applies concept of Illuminating Modes which is formulated for the case of two-side opened structure. The current on patch is expanded in basis functions in form of Mathieu radial and angular functions. The spectrum of excited modes for exemplary planar resonators is presented and discussed using the concept of power of...
-
Resonance microstrip structure with patch of arbitrary convex geometry with the use of field matching technique
PublicationAn analysis of the resonance frequency problem of planar microstrip structure with patch of arbitrary convex geometry is presented. A full-wave analysis is employed utilizing a combination of Galerkin’s moment method and field matching technique. In this approach, a field matching technique is adopted to calculate the patch surface current densities, and next the method of moments is utilized to calculate resonance frequencies...
-
Energy efficient beam control for 5G antennas
PublicationThe rapid development of 5G and beyond systems demands improvement in communication speed, latency and safety to maintain the required quality of service. This paper presents an overview of different concepts of energy-efficient antenna systems, which offer beam-shaping and beam-steering functionalities, that enhance connectivity performance and can be used in 5G applications. Different designs for 5.9 GHz, 39 GHz and 60 GHz frequency...
-
Simulation-Based Design of Microstrip Linear Antenna Arrays Using Fast Radiation Response Surrogates
PublicationFast yet accurate technique for simulation-based design of linear arrays of microstrip patch antennas is presented. Our technique includes: (i) optimization of the corrected array factor of the antenna array under design for a phase excitation taper resulting in reduced side lobes; (ii) simulation-driven optimization of the array element for element dimensions resulting in matching at and about operational frequency, and (iii)...
-
MATCHED FILTER APPROACH FOR MICROSEISMIC SIGNAL PROCESSING OF REAL DATA FROM EAST POMERANIA SHALE GAS
PublicationThe microseismic monitoring is a method of monitoring of fracture propagation during hydraulic fracturing (HF)process. An array of several hundred geophones is placed on the surface to record little ground tremors induced by fracturing process. Filtration and summation of signals from geophones is essential to identify and locate fracturing events from underground. Authors propose a method of matched filtering, that is usually...
-
Powierzchniowe badania mikrosejsmiczne na odwiercie w północnej Polsce, optymalizacja modelu prędkościowego
PublicationCelem wykonanych prac było potwierdzenie możliwości wykorzystania mikrosejsmicznego pomiaru powierzchniowego ze schematem rozłożenia typu patch array dla polskich warunków geologicznych. Artykuł zawiera opis przeprowadzonych prac mikrosejsmiki powierzchniowej wykonanych na odwiercie w północnej Polsce wraz z procedurą optymalizacji modelu prędkościowego.
-
MICROSEISMIC EVENT DETECTION USING DIFFERENT ALGORITHMS ON REAL DATA FROM PATCH ARRAY GEOPHONE GRID FROM EASTERN POMERANIA FRACTURING JOB
PublicationThe microseismic monitoring is a method of monitoring of fracture propagation during hydraulic fracturing process. Hydraulic fracturing is a method of reservoir stimulation used especially for unconventional gas recovery. A matrix of several thousand geophones is placed on the surface of earth to record every little tremor of ground induced by fracturing process. Afterwards, the signal is analysed and the place of tremor occurrence...
-
Dual polarization antennas for UHF RFID readers
PublicationThis paper presents various concepts of switching polarization in patch antenna dedicated for UHF RFID readers. Proposed designs allow for switching between linear and circular polarization. The first design does not require electronic switching as the polarization can be changed by choosing one of two available feeding terminals. Two remaining designs use PIN diode or FET SPDT switch.
-
An Analysis of Elliptical-Rectangular Patch Structure on Multilayer Elliptic Cylinders
PublicationThe resonance frequency problem of an ellipticalrectangular patch mounted on multilayered dielectric coated elliptic conducting cylinder, is investigated in this paper. A fullwave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. An additional theorem for Mathieu functions is utilized to investigate the non-confocal ellipse...
-
Zero-Pole Electromagnetic Optimization
PublicationA fast technique for the full-wave optimization of transmission or reflection properties of general linear timeinvariant high-frequency components is proposed. The method is based on the zeros and poles of the rational function representing the scattering parameters of the device being designed and it is the generalization of the technique developed for the design by optimization of microwave filters. The performance of the proposed...
-
Design of a Patch Power Divider with Simple Structure and Ultra-Broadband Harmonics Suppression
PublicationThis paper introduces a simple H-shaped patch Wilkinson power divider (WPD), which provides ultra wide harmonics suppression band. The presented WPD designed at 1.8 GHz, and exhibits good performance at the operating bandwidth. In the proposed divider structure, two simple patch low-pass filters (LPFs) are employed at each branch, and three open ended stubs are added at each port. The proposed divider, implemented using the aforementioned...
-
On Alternative Approaches to Design of Corporate Feeds for Low-Sidelobe Microstrip Linear Arrays
PublicationTwo design approaches, illustrated by simulations and measurements, aiming at a systematic computer-aided design of printed circuit feeds for low-sidelobe microstrip antenna arrays are described. The novelty of these approaches resides in identification of the optimal feed architectures with subsequent simulation-based optimization of the feed and array aperture dimensions. In this work, we consider microstrip corporate feeds realizing...
-
An Analysis of Probe-Fed Rectangular Patch Antennas With Multilayer and Multipatch Configurations on Cylindrical Surfaces
PublicationA multi-patch configuration of probe-fed rectangular microstrip antennas mounted on a cylindrical body, with electrically small radius, with an arbitrary number of substrate and superstrate layers is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. A unified procedure for creating proper matrices for the investigated geometry of the structure is outlined here. Numerical results for...
-
On the broadband behaviour of planar elliptical dipole-modal approach
PublicationBroadband behavior of planar elliptical dipole structure is analyzed using Illuminatin Modes (IM) approach. The current on patch has been expanded in series of eigenfunctions in form of Mathieu radial and angular functions. The frequency behavior of current distributions and related powers have been discussed to explain the mechanism of broadband operation of the dipole. Different behavior of radiations patterns in wide frequency...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
Calculation of Resonance in Planar and Cylindrical Microstrip Structures Using a Hybrid Technique
PublicationA hybrid technique was employed for the analysis of the resonance frequency of thin planar and cylindrical microstrip structures with the patches of arbitrary geometry. The proposed technique utilizes a combination of Galerkin’s moment method and a finite-element method (FEM). In this approach, an FEM is adopted to calculate the patch surface current densities, and a method of moments is utilized to calculate the resonance frequencies...
-
Low-cost 3D Printed Circularly Polarized Lens Antenna for 5.9 GHz V2X Applications
PublicationThis paper presents design and realization of a circularly polarized antenna consisting of a linearly polarized patch antenna and a 3D printed lens, at the same time performing the functions of wave collimator and a polarizer. The antenna is dedicated for 802.11p systems, as a part of road infrastructure, with operation bandwidth 5.85 - 5.925 GHz. Its realised gain and axial ratio at center frequency 5.9 GHz are 14.3 dBi and 2.17...
-
Frequency Selective Surface Based MIMO Antenna Array for 5G Millimeter-Wave Applications
PublicationAbstract: In this paper a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2×2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabri-cated on Rogers RT/Duroid high frequency substrate...
-
Excitation of Circularly Polarized Wave via Single-Feed Metasurface-Integrated Compact Antenna for Internet of Things
PublicationA compact circularly polarized (CP) quasi-omnidirectional antenna is introduced for internet of things (IoT). The structure consists of two components implemented on FR-4 substrates, and sep-arated by an air gap: one printed with a rectangular patch fed through a matching network, and another with a metasurface and a ground plane. Two different methods for impedance matching are employed. An equivalent circuit model of the antenna...
-
Novel structure and design of enhanced-bandwidth hybrid quadrature patch coupler
PublicationA novel structure and design optimization procedure of an enhanced-bandwidth hybrid quadrature patch coupler is proposed. Improved performance of the circuit has been obtained by parameterizing the coupler sections using splines, which introduces additional degrees of freedom. Due to computational complexity of the parameter adjustment problem, a sequential design procedure is applied. In each iteration, a selected number of spline...
-
Resonance Frequency Calculation of a Multilayer and Multipatch Spherical Microstrip Structure Using a Hybrid Technique
PublicationThis communication offers a rigorous analysis of the resonance frequency problem of a spherical microstrip structure mounted on a multilayer, dielectric-coated metallic sphere, with an electrically small radius. The structure consists of single or multiple metallic patches with arbitrary shapes. A full-wave analysis is employed with the use of proposed hybrid approach, combining the finite-difference technique with a spectral domain...
-
MutL protein as a constituent of vsp, ner and mmr repair systems
PublicationMutS and MutL proteins are renowned mostly for their functions in well-characterized, post-DNA replication mis- match repair system (MMR). However, there is growing evidence that MMR system is not the only field of action for these pro- teins. Moreover, the participation in MMR does not even have to be their primary function. There are some reports indicat- ing involvement of MutL in BER, NER and VSP (very short patch repair)....
-
MUTL PROTEIN AS A COMMON CONSTITUENT OF VSP, BER, NER AND MMR REPAIR SYSTEMS
PublicationMutS and MutL proteins are renowned mostly for their functions in well-characterized, post-DNA replication mismatch repair system (MMR). However, there is growing evidence that MMR system is not the only field of action of these proteins. Moreover, involvement in MMR does not even have to be their primary function. There are some reports indicating involvement of MutL in BER, NER and VSP (very short patch repair). MutL protein...
-
A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design
PublicationA conformal circularly polarized series-fed microstrip array design for broadside radiation is presented. The array aperture under design is conformal to a cylindrical surface of a given radius. The approach we present primarily addresses focusing of the circularly polarized major lobe of the conformal array by proper dimensioning of the aperture spacings. The proposed analytical models yield the values of the element spacings...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...