Filters
total: 38
Search results for: WASTE FILLER
-
Copper Slag as a Potential Waste Filler for Polyethylene-Based Composites Manufacturing
PublicationThe present study aimed to analyze the application of waste material from copper production– copper slag (ŻŻL) as filler for composites based on the high-density polyethylene (HDPE). Copper slag filler was introduced in the amounts of 1–20 wt%, and its influence on the appearance (color analysis), chemical structure (Fourier-transform infrared (FTIR) spectroscopy), microstructure (optical microscopy), as well as static (tensile...
-
Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites
PublicationThis work aims to describe the coffee silverskin effect as a lignocellulosic waste filler for high-density polyethylene (HDPE) composites development. The main task was to determine various modification effects resulting from the complex chemical composition of coffee silverskin containing compounds with potential antioxidative properties, including caffeine, polyphenols, tannins, or melanoidins. The processing, thermal, physicochemical,...
-
Rotational molding of polylactide (PLA) composites filled with copper slag as a waste filler from metallurgical industry
PublicationThe research work carried out so far indicates the ever wider possibilities and demand for shaping composite products in the rotational molding technology. This trend was the main reason to use waste-based filler from the metallurgical process as a filler for manufacturing polylactide (PLA)-based remolded composites. Copper slag (CS) was introduced in the single-step processing method to PLA matrix at 5, 10, 20, and 35 wt%. The...
-
Mechanical Properties, Microstructure and Surface Quality of Polypropylene Green Composites as a Function of Sunflower Husk Waste Filler Particle Size and Content
PublicationAgricultural waste is a still untapped source of materials that can, in case of proper utilization, significantly improve the sustainability of polymers and their composites. In this work, polymer composites based on isotactic polypropylene were produced incorporating ground sunflower husk in the amount of 10 wt% and 20 wt%. The work’s main objective is to evaluate how preliminary fractioning of this agricultural waste filler affects...
-
Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods
PublicationThermoplastic starch (TPS) is a homogenous material prepared from native starch and water or other plasticizers subjected to mixing at a temperature exceeding starch gelatinization temperature. It shows major drawbacks like high moisture sensitivity, poor mechanical properties, and thermal stability. To overcome these drawbacks without significant cost increase, TPS could be blended with bio-based or biodegradable polymers and...
-
Chitin nanowhiskers from shrimp shell waste as green filler in acrylonitrile-butadiene rubber: Processing and performance properties
PublicationIn this work, chitin nanowhiskers with high crystallinity index were obtained from shrimp shells waste using acid hydrolysis method and then comprehensively characterized. Subsequently, the impact of chitin nanowhisker content on processing and performance of acrylonitrile-butadiene rubber based nanocomposites was evaluated. The results showed that the addition of chitin nanowhiskers increased tensile strength and tear strength...
-
A case study on the rotomolding behavior of black tea waste and bio-based high-density polyethylene composites: Do active compounds in the filler degrade during processing?
PublicationThis study verified the possibility of using waste material from the food industry (black tea) as functional filler of rotomolded biobased high-density polyethylene-based composites. As part of the experimental work, the influence of the materials preparation, i.e., dry blending versus twin-screw extrusion, on the effectiveness of the stabilizing antioxidant effect of the black tea was analyzed. The aim of the work was to verify...
-
MANDARIN PEEL AS AN AUSPICIOUS FUNCTIONAL FILLER FOR POLYMER COMPOSITES
PublicationThis work describes the application of mandarin peel (MP) as a waste filler for high-density polyethylene (HDPE) composites. The main goal was to investigate the impact of the filler's essential oils, which include multiple terpenes and terpenoids, on the processing, physicochemical, mechanical, and thermal properties of the composites as a function of different filler content (1 – 10 wt%), as well as its effect on the color and...
-
Surface Treatment of Rubber Waste
PublicationThis chapter deals with the study of different approaches to improve the compatibility of waste rubber with polymeric matrixes of high density polyethylene (HDPE) by using surface treatments to increase adhesion. Different surface treatments such as etching with sulphuric and nitric acids, the use of a silane as a coupling agent and chlorination with trichloroisocyanuric acid (TCI) have been applied. The modification of waste rubber...
-
Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – a review
PublicationNowadays, waste tire rubber (WTR) management is a growing and serious problem. Therefore, research works focused on the development of cost-effective and environmentally-friendly methods of WTR recycling are fully justified. Incorporation of WTR into polymer matrices and composite materials attracts much attention, because this approach allows sustainable development of industrially applicable waste tires recycling technologies....
-
How the Dimensions of Plant Filler Particles Affect the Oxidation-Resistant Characteristics of Polyethylene-Based Composite Materials
PublicationThis study analyzed the possibility of using plant-originated waste materials (black and green tea dust) as functional polyethylene fillers. The dependence between the size of the filler particles and their antioxidant potential is discussed. Six fractions were selected: below 50 µm, 50–100 µm, 100–200 µm, 200–400 µm, 400–630 µm and 630–800 µm. Significant differences between the effect of particle size and the antioxidant properties...
-
Recycling of Polyurethanes
PublicationPolyurethane waste can be recycled by mechanical methods (i.e., grinding and applying as a filler or pressing with a bonding agent) and chemical methods (mainly by e.g., glycolysis, hydrolysis, or aminolysis). There is also possibility to the recover energy from polyurethanes waste (by incineration, gasification, and pyrolysis).
-
Structure and performance properties of environmentally-friendly biocomposites based on poly(ɛ-caprolactone) modified with copper slag and shale drill cuttings wastes
PublicationThe potential application of two types of industrial wastes, drill cuttings (DC) and copper slag (CS), as silica-rich modifiers of poly(ɛ-caprolactone) (PCL) was investigated. Chemical structure and physical properties of DC and CS fillers were characterized using X-ray diffractometer, X-ray fluorescence spectroscopy, particle size and density measurements. PCL/DC and PCL/CS composites with a variable content of filler (5 to 50...
-
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance
PublicationWaste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’...
-
On the Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly(ε-Caprolactone) Based Biocomposites
PublicationIn this work, three types of agricultural waste: olive stones (OS), date seed (DS) and wheat bran (WB) were applied as potential lignocellulosic fillers in poly(ε-caprolactone) (PCL) based biocomposites. Differences in composites’ performance were related to the higher content of proteins, noted for WB comparing to other fillers applied, which enhanced plasticization of PCL matrix. The mechanical properties of biocomposites were...
-
Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams’ Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles
PublicationMaterial innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated...
-
Recycling of Waste Rubber by the Manufacturing of Foamed Polyurethane-Based Composites—Current State and Perspectives
PublicationWorn car tires are disruptive waste, and the issue of their management is crucial for the natural environment. In many countries, the primary method of end-of-life tires utilization is energy recovery. However, more effective and beneficial for the environment is material recycling. Using them for the production of polymer-rubber composites seems to be an auspicious direction of research. Incorporation of ground tire rubber into...
-
Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder
PublicationRecycling of waste tires is a significant issue considering both environmental and economic aspects. One of the leading recycling routes is the shredding of tires resulting in the generation of ground tire rubber. This material can be easily introduced into various polymer matrices as a filler, reducing the use of conventionally applied petroleum-based materials. In such cases, it is essential to ensure sufficient interfacial compatibility,...
-
Synthesis and characterization of biopolyols through biomass liquefaction of wood shavings and their application in the preparation of polyurethane wood composites
PublicationThe sustainability of production systems in wood processing, wood industry, and wooden waste disposal is an important issue for European industry and society. Proper development of products based on renewable wood resources gives an opportunity to provide materials with long-term environmental, social, and economic sustainability. This study aims to establish a new way of forestry and agricultural waste materials utilization by...
-
Sustainable Strategy for Algae Biomass Waste Management via Development of Novel Bio-Based Thermoplastic Polyurethane Elastomers Composites
PublicationThis work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina. ABWs were used in the bio-TPUs composites as a filler in the quantity of 1, 5, 10, and 15 wt.%. The bio-based composites...
-
Management of ground tire rubber waste by incorporation into polyurethane-based composite foams
PublicationRapid economic growth implicated the developing multiple industry sectors, including the automotive branch, increasing waste generation since recycling and utilization methods have not been established simultaneously. A very severe threat is the generation of enormous amounts of post-consumer tires considered burdensome waste, e.g., due to the substantial emissions of volatile organic compounds (VOCs). Therefore, it is essential...
-
OIL-ASSISTED THERMO-MECHANICAL RECLAMATION OF GROUND TIRE RUBBER
PublicationNowadays, it is crucial to seek for the methods of by-products and waste utilization, considering both environmental and economic factors. The example of waste material generated in the massive amounts, which requires the attention is ground tire rubber generated during recycling of post-consumer car tires. It can be applied as a filler into different polymer matrices, but to enhance its effectivity proper modifications should...
-
A novel approach in wood waste utilization for manufacturing of catalyst-free polyurethane-wood composites (PU-WC)
PublicationIn recent decades, due to the increase in environmental awareness and noticeable environmental degradation, the area of wood waste management has attracted increasing attention. The purpose of this study is to develop a new type of highly filled polyurethane wood-composite (PU-WC) by the utilization of large amount of wood wastes without addition of a catalyst. Although wood-plastic composites (WPCs) are widely known, there is...
-
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
PublicationThe application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire...
-
DETERMINATION OF THE HYDROXYL NUMBER OF GROUND TIRE RUBBER PARTICLES VIA MODIFIED TEST METHOD FOR ISOCYANATE GROUPS
PublicationNowadays, considering the environmental trends and law regulations associated with the circular economy, it is very important to seek for the methods of by-products and waste utilization. The example of such material, which requires the attention and recycling method is ground tire rubber generated during recycling of post-consumer car tires. It can be introduced into various polymer matrices as a filler, but to enhance its effectivity...
-
Polyurethane/ground tire rubber composite foams based on polyglycerol: processing, mechanical and thermal properties
PublicationDuring the synthesis of rigid polyurethane foams, petrochemical polyol was substituted with polyglycerol, the product of thermo-catalytic polycondensation of waste glycerol, resulting from biodiesel production. Two types of ground tire rubbers, untreated and thermo-mechanically reclaimed, were used to obtain ‘‘green’’ polyurethane-polyglycerol composite foams. Samples were prepared by a single-step method for the ratio of NCO/OH...
-
The impact of filler thermomechanical modifications on static and dynamic mechanical performance of flexible foamed polyurethane/ground tire rubber/zinc borate composites
PublicationThe rapid development of the automotive industry is very beneficial to many aspects of human life, but it is also a very significant environmental burden. The most straightforward impact is related to the generation of exhaust, but the management of post-consumer car parts is also a major challenge. Among them, waste tires are very burdensome due to their enormous numbers. Therefore, it is essential to develop novel, environmentally...
-
The Impact of Ground Tire Rubber Oxidation with H2O2 and KMnO4 on the Structure and Performance of Flexible Polyurethane/Ground Tire Rubber Composite Foams
PublicationThe use of waste tires is a very critical issue, considering their environmental and economic implications. One of the simplest and the least harmful methods is conversion of tires into ground tire rubber (GTR), which can be introduced into different polymer matrices as a filler. However, these applications often require proper modifications to provide compatibility with the polymer matrix. In this study, we examined the impact...
-
Reclaimed rubber in-situ grafted with soybean oil as a novel green reactive plasticizer in SBR/silica compounds
PublicationPolymer recycling and biodegradable polymeric materials are two major routes towards the sustainable development of polymer materials which contributes to the management of waste. In this regard, an eco-friendly approach is presented wherein high reclaiming degree of ground tire rubber (GTR) was achieved by low-temperature oxidation under swollen action of soybean oil. In-situ reclaimed GTR with soybean oil was cured into reactive...
-
The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber
PublicationRubber technology experiences a new age by the use of biowaste or natural fillers. In this regard, taking properties of reinforcing agents from biowaste fillers remains as the challenging matter. Chicken eggshell (ES) biowaste has recently been introduced to substitute calcium carbonate (CaCO3) duo to its superior properties and low price. In this work, composites based on acrylonitrile butadiene rubber (NBR) reinforced with ES...
-
The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublicationCurrently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and use of polymers and polymer-based materials. The application of recycled or waste-based materials often deals efficiently...
-
Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends
PublicationA novel and cost-effective approach towards the modification of epoxy matrix has been developed using recycled polyurethane for the first time without sacrificing any of the intrinsic properties of the resin. Polyurethane, recycled from waste foam by glycolysis process (RPU), was found to be very effective in improving the properties of the thermosetting resin based on Diglycidyl ether of bisphenol-A (DGEBA). The effect of the...
-
Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber
PublicationIn this work, brewers’ spent grain (BSG) and ground tire rubber (GTR) waste fillers were applied as low-cost reinforcement phase in rigid polyurethane foam (PUR). PUR/BSG/GTR composites were prepared by a single step method, using polyglycerol as partial substitute of commercially available petrochemical polyols. Foaming parameters, chemical structure, dynamic mechanical properties, thermal stability, physico-mechanical properties...
-
Recycling of Polyurethanes Containing Flame-Retardants and Polymer Waste Transformed into Flame-Retarded Polyurethanes
PublicationThe growing number of polyurethanes (PUs) produced every year has developed methods for their mechanical and chemical recycling which yield valuable products like substitutes for commercial polyols or flame-retardants. PUs can be produced in different shapes and forms (i.e., elastomers, flexible or rigid foams, coatings, etc.) using several different components (i.e., di- or polyisocyanates, ester- or ether-based polyols, low-molecular...
-
THE MELT FLOWABILITY AND TENSILE PERFORMANCE OF POLY (-CAPROLACTONE)/BREWERS’ SPENT GRAIN COMPOSITES AS A FUNCTION OF FILLER MODIFICATION
PublicationNowadays, it is essential to reduce the environmental impact of products and technologies. Such an approach should be highlighted in all research activities. In the case of polymer composites, it can be realized by introducing by-products or waste materials as fillers. An auspicious example of such material is the brewers’ spent grain, the major byproduct of the beer production. Its chemical composition, relatively similar to conventional...
-
The impact of thermomechanical and chemical treatment of waste Brewers’ spent grain and soil biodegradation of sustainable Mater-Bi-Based biocomposites
PublicationDue to the massive plastic pollution, development of sustainable and biodegradable polymer materials is crucial to reduce environmental burdens and support climate neutrality. Application of lignocellulosic wastes as fillers for polymer composites was broadly reported, but analysis of biodegradation behavior of resulting biocomposites was rarely examined. Herein, sustainable Mater-Bi-based biocomposites filled with thermomechanically-...
-
Comparative Analysis of the Coffee and Cocoa Industry By-Products on the Performance of Polyethylene-Based Composites
PublicationThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Comparative Analysis of the Cofee and Cocoa Industry By‑Products on the Performance of Polyethylene‑Based Composites
PublicationThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...