displaying 1000 best results Help
Search results for: BULK-DRIVEN CIRCUITS
-
Test limitations induced by fault-driven instability of analog circuits.
PublicationCelem pracy jest ocena ograniczeń testowania uszkodzeń parametrycznych wynikajacych z utraty stabilności przez testowany układ analogowy. Zastosowano metody zapożyczone z teorii sterowania: liniową transformacje frakcyjną i analizę metodą strukturalnych wartości szczególnych. Przykładowej analizie poddano filtr typu leapfrog. Do obliczeń wykorzystano środowisko Matlab/Simulink. Wyniki obliczeń wykazały dużą podatność testowanego...
-
Rapid multi-objective simulation-driven design of compact microwave circuits
PublicationA methodology for rapid multi-objective design of compact microwave circuits is proposed. Our approach exploits point-by-point Pareto set identification using surrogate-based optimization techniques, auxiliary equivalent circuit models, and space mapping as the major model correction method. The proposed technique is illustrated and validated through the design of a compact rat-race coupler. A set of ten designs being trade-offs...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublicationSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublicationA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublicationSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublicationA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Fast EM-Driven Parameter Tuning of Microwave Circuits with Sparse Sensitivity Updates via Principal Directions
PublicationNumerical optimization has become more important than ever in the design of microwave components and systems, primarily as a consequence of increasing performance demands and growing complexity of the circuits. As the parameter tuning is more and more often executed using full-wave electromagnetic (EM) models, the CPU cost of the overall process tends to be excessive even for local optimization. Some ways of alleviating these issues...
-
A 0.5-V bulk-driven voltage follower / DC level shifter and its application in class AB output stage
PublicationA simple realization of a 0.5-V bulk-driven voltage follower/DC level shifter, designed in a 0.18um CMOS technology is presented in the paper. The circuit is characterized by large input and output voltage swings, and a DC voltage gain close to unity. The DC voltage shift between input and output terminals can be regulated in a certain interval around zero, by means of biasing current sinks. An application of the proposed voltage...
-
Multiple output differential OTA with linearizing bulk-driven active-error feedback loop for continuous-time filter applications
PublicationA CMOS circuit realization of a highly linear multiple-output differential operational transconductance amplifier (OTA) has been proposed. The presented approach exploits a differential pair as an input stage with both the gate and the bulk terminals as signal ports. For the proposed OTA, improved linearity is obtained by means of the active-error feedback loop operating at the bulk terminals of the input stage. SPICE simulations...
-
Bulk linearized CMOS differential pair transconductor for continuous-time OTA-C filter design
PublicationIn this paper, the MOS differential pair driven simultaneously from gates and bulk terminals is described. An approximated analytical solution of the voltage to current transfer function has been found for the proposed circuit. Four possible combinations of gate and bulk connections of the input signal are presented. Basing on the configuration giving the best linearity, the operational transconductance amplifier (OTA) has been designed...
-
A new approach to a fast and accurate design of microwave circuits with complex topologies
PublicationA robust simulation-driven design methodology of microwave circuits with complex topologies has been presented. The general method elaborated is suitable for a wide class of N-port unconventional microwave circuits constructed as a deviation from classic design solutions. The key idea of the approach proposed lies in an iterative redesign of a conventional circuit by a sequential modification and optimisation of its atomic building...
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublicationIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublicationA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Electric Field-Driven Assembly of Sulfonated Polystyrene Microspheres
PublicationA designed assembly of particles at liquid interfaces offers many advantages for development of materials, and can be performed by various means. Electric fields provide a flexible method for structuring particles on drops, utilizing electrohydrodynamic circulation flows, and dielectrophoretic and electrophoretic interactions. In addition to the properties of the applied electric field, the manipulation of particles often depends...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells
PublicationIn this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublicationThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublicationOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
PublicationElectromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublicationDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublicationManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublicationThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Globalized parametric optimization of microwave components by means of response features and inverse metamodels
PublicationSimulation-based optimization of geometry parameters is an inherent and important stage of microwave design process. To ensure reliability, the optimization process is normally carried out using full-wave electromagnetic (EM) simulation tools, which entails significant computational overhead. This becomes a serious bottleneck especially if global search is required (e.g., design of miniaturized structures, dimension scaling over...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublicationHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
Accelerated design optimization of miniaturized microwave passives by design reusing and Kriging interpolation surrogates
PublicationElectromagnetic (EM) analysis has become ubiquitous in the design of microwave components and systems. One of the reasons is the increasing topological complexity of the circuits. Their reliable evaluation—at least at the design closure stage—can no longer be carried out using analytical or equivalent network representations. This is especially pertinent to miniaturized structures, where considerable EM cross-coupling effects occurring...
-
Rapid optimization of compact microwave passives using kriging surrogates and iterative correction
PublicationDesign of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects,...
-
Study of Integer Spin S = 1 in the Polar Magnet β-Ni(IO3)2
PublicationPolar magnetic materials exhibiting appreciable asymmetric exchange interactions can potentially host new topological states of matter such as vortex-like spin textures; however, realizations have been mostly limited to half-integer spins due to rare numbers of integer spin systems with broken spatial inversion lattice symmetries. Here, we studied the structure and magnetic properties of the S = 1 integer spin polar magnet β-Ni(IO3)2...
-
Bile salts in digestion and transport of lipids
PublicationBecause of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food...
-
Deciphering the Molecular Mechanism of Substrate-Induced Assembly of Gold Nanocube Arrays toward an Accelerated Electrocatalytic Effect Employing Heterogeneous Diffusion Field Confinement
PublicationThe complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 μm, where the dominating patterns are (111) and...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublicationMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Knowledge-Based Expedited Parameter Tuning of Microwave Passives by Means of Design Requirement Management and Variable-Resolution EM Simulations
PublicationThe importance of numerical optimization techniques has been continually growing in the design of microwave components over the recent years. Although reasonable initial designs can be obtained using circuit theory tools, precise parameter tuning is still necessary to account for effects such as electromagnetic (EM) cross coupling or radiation losses. EM-driven design closure is most often realized using gradient-based procedures,...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublicationOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
On Decision-Making Strategies for Improved-Reliability Size Reduction of Microwave Passives: Intermittent Correction of Equality Constraints and Adaptive Handling of Inequality Constraints
PublicationDesign optimization of passive microwave components is an intricate process, especially if the primary objective is a reduction of the physical size of the structure. The latter has become an important design consideration for a growing number of modern applications (mobile communications, wearable/implantable devices, internet of things), where miniaturization is imperative due to a limited space allocated for the electronic circuitry....
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Programmable Digital Circuits
e-Learning Courses -
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublicationThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Direct Constraint Control for EM-Based Miniaturization of Microwave Passives
PublicationHandling constraints imposed on physical dimensions of microwave circuits has become an important design consideration over the recent years. It is primarily fostered by the needs of emerging application areas such as 5G mobile communications, internet of things, or wearable/implantable devices. The size of conventional passive components is determined by the guided wavelength, and its reduction requires topological modifications,...
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublicationDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Fault detection in electronic circuits using test buses
PublicationA survey of test buses designed for diagnostics of digital and analog electronic circuits is presented: the IEEE 1149.1 bus for digital circuits, the IEEE 1149.4 bus for mixed-signal and the IEEE 1149.6 bus for AC coupled complex digital circuits. Each bus is presented with its structure, solution of key elements, particularly boundary registers and a set of test instructions. Diagnosis with the use of the described buses is...
-
Electric shock hazard in circuits with variable-speed drives
PublicationThe conventional approach to electrical safety under fault condition in typical power systems considers earth fault currents of sinusoidal waveform and frequency of 50/60 Hz. However, in circuits with variable-speed drives, there is earth fault current flow with harmonics, and these harmonics influence the threshold of ventricular fibrillation. The paper presents earth fault current waveforms in circuits with variable-speed drives...
-
Numerical Test for Stability Evaluation of Analog Circuits
PublicationIn this contribution, a new numerical test for the stability evaluation of analog circuits is presented. Usually, if an analog circuit is unstable then the roots of its characteristic equation are localized on the right half-plane of the Laplace s- plane. Because this region is unbounded, we employ the bilinear transformation to map it into the unit disc on the complex plane. Hence, the existence of any root inside the unit disc...
-
Buckling analyses of cylindrical metal silos containing bulk solids
PublicationThe paper presents quasi-static 3D buckling analysis results of thin-walled cylindrical metal silos with and without bulk solids. The behaviour of the bulk solid was described with a hypoplastic constitutive model. Non-linear analyses with geometric and material non-linearity were performed with a perfect and an imperfect silo shell. Different initial geometric imperfections were considered. The influence of internally stored bulk...
-
Bulk Solids Handling
Journals -
System of protection against electric shock for circuits with power electronics converters
PublicationModern low voltage circuits are very often equipped with power electronics converters, therefore in these circuits non-sinusoidal earth currents (touch currents) may occur. For non-sinusoidal currents safety criteria should be modified. This paper presents these modified criteria and a computer system of protection against electric shock which can be implemented in circuits with power electronics converters. The system is based...
-
Aggregation of Rhodamine 6G in titanium dioxide nanolayers and bulk xerogels
PublicationNanolayers and bulk xerogels of Rhodamine 6G (Rh6G) in titanium dioxide (Rh6G/TiO2) were prepared using the sol–gel method. The spectroscopic and structural properties of these two types of hybrid matrices were studied as a function of dye concentration. In both cases absorption, fluorescence and time resolved emission spectra show the formation of fluorescent aggregates. The observed stronger changes in characteristics of bulk...
-
Programmable Digital Circuits (2023/2024)
e-Learning Courses -
Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites
PublicationSurface modification of nanoparticles with functional molecules has become a routine method to compensate for diffusion-controlled crosslinking of thermoset polymer composites at late stages of crosslinking, while bulk modification has not carefully been discussed. In this work, a highly-crosslinked model polymer nanocomposite based on epoxy and surface-bulk functionalized magnetic nanoparticles (MNPs) was developed. MNPs were...
-
Buckling analyses of metal cylindrical silos containing bulk solids during filling
PublicationThe paper presents 3D results on stability of thin-walled cylindrical metal silos made of isotropic rolled and corrugated plates containing bulk solids. The behavior of bulk solids was described using a hypoplastic constitutive model. Nonlinear finite element (FE) analyses with both geometric and material nonlinearity were performed with a perfect and an imperfect silo shell wherein initial geometric imperfections were taken into...
-
Photovoltaic bulk heterojunctions with interpenetrating network based on semiconducting polymers
PublicationPhotovoltaic cells are supposed to be the most common generators of useful electricity in the nearest future as they utilize inexhaustible carriers of renewable energy called photons. Despite the fact that 95% of worldwide applied photovoltaic devices are based on inorganic semiconductors the area of organic photovoltaics grows successively due to possibility of considerable reduction of manufacturing costs. Since the Heeger's...