Filters
total: 8124
-
Catalog
- Publications 6613 available results
- Journals 249 available results
- Conferences 107 available results
- People 343 available results
- Projects 20 available results
- Laboratories 3 available results
- e-Learning Courses 361 available results
- Events 11 available results
- Open Research Data 417 available results
displaying 1000 best results Help
Search results for: SURROGATE MODELING , ANTENNA DESIGN , DOMAIN CONFINEMENT , NESTED KRIGING , DEEP NEURAL NETWORKS
-
Deep neural networks for data analysis 27/28
e-Learning Courses -
Deep neural networks for data analysis 25/26
e-Learning Courses -
Deep neural networks for data analysis 26/27
e-Learning Courses -
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement
PublicationA variety of surrogate modelling techniques has been utilized in high-frequency design over the last two decades. Yet, the curse of dimensionality still poses a serious challenge in setting up re-liable design-ready surrogates of modern microwave components. The difficulty of the model-ing task is only aggravated by nonlinearity of circuit responses. Consequently, constructing a practically usable surrogate model, valid across...
-
Small Antenna Design Using Surrogate-Based Optimization
PublicationIn this work, design of small antennas using efficient numerical optimization is investigated. We exploit variable-fidelity electromagnetic (EM) simulations and the adaptively adjusted design specifications (AADS) technique. Combination of these methods allows us to simultaneously adjust multiple geometry parameters of the antenna structure of interest in a computationally feasible manner, leading to substantial reduction of the...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublicationDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
-
Outlier detection method by using deep neural networks
PublicationDetecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublicationThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Domain segmentation for low-cost surrogate-assisted multi-objective design optimisation of antennas
PublicationAbstract: Information regarding the best possible design trade-offs of an antenna structure can be obtained through multiobjective optimisation (MO). Unfortunately, MO is extremely challenging if full-wave electromagnetic (EM) simulation models are used for performance evaluation. Yet, for the majority of contemporary antennas, EM analysis is the only tool that ensures reliability. This study introduces a procedure for accelerated...
-
Design of microstrip antenna subarrays: a simulation-driven surrogate-based approach
PublicationA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (here, a corporate network) on the subarray side-lobe level and allows adjustment of both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Fundamentals of Data-Driven Surrogate Modeling
PublicationThe primary topic of the book is surrogate modeling and surrogate-based design of high-frequency structures. The purpose of the first two chapters is to provide the reader with an overview of the two most important classes of modeling methods, data-driven (or approx-imation), as well as physics-based ones. These are covered in Chap-ters 1 and 2, respectively. The remaining parts of the book give an exposition of the specific aspects...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation
PublicationCost-efficient multi-objective design optimization of antennas is presented. The framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublicationThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublicationIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublicationIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Knowledge-based performance-driven modeling of antenna structures
PublicationThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Sławomir Jerzy Ambroziak dr hab. inż.
PeopleSławomir J. Ambroziak was born in Poland, in 1982. He received the M.Sc., Ph.D. and D.Sc. degrees in radio communication from Gdańsk University of Technology (Gdańsk Tech), Poland, in 2008, 2013, and 2020 respectively. Since 2008 he is with the Department of Radiocommunication Systems and Networks of the Gdańsk Tech: 2008-2013 as Research Assistant, 2013-2020 as Assistant Professor, and since 2020 as Associate Professor. He is...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Results of implementation of Feed Forward Neural Networks for modeling of heat transfer coefficient during flow condensation for low and high values of saturation temperature
Open Research DataThis database present results of implementation of Feed Forward Neural Networks for modeling of heat transfer coefficient during flow condensation for low and high values of saturation temperature. Databse contain one table and 7 figures.
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublicationEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublicationAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublicationHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublicationThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Reliable low-cost surrogate modeling and design optimisation of antennas using implicit space mapping with substrate segmentation
PublicationAbstract: In this work, a reliable methodology for fast simulation-driven design optimisation of antenna structures is proposed. The authors’ approach exploits implicit space mapping (ISM) technology. To adopt it for handling antenna structures, they introduce substrate segmentation with separate dielectric permittivity value assigned for each segment as ISM preassigned parameters. At the same time, the coarse model for space mapping...
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublicationHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
Fundamentals of Physics-Based Surrogate Modeling
PublicationChapter 1 was focused on data-driven (or approximation-based) modeling methods. The second major class of surrogates are physics-based models outlined in this chapter. Although they are not as popular, their importance is growing because of the challenges related to construction and handling of approximation surrogates for many real-world problems. The high cost of evaluating computational models, nonlinearity of system responses,...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublicationA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublicationThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Kriging Models for Microwave Filters
PublicationSurrogate modeling of microwave filters’ response is discussed. In particular, kriging is used to model either the scattering parameters of the filter or the rational representation of the filter’s characteristics. Surrogate models for these two variants of kriging are validated in solving a microwave filter optimization problem. A clear advantage of surrogate models based on the rational representation over the models based on scattering...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
Design, Realization and Measurements of Enhanced Performance 2.4 GHz ESPAR Antenna for Localization in Wireless Sensor Networks
PublicationThis paper presents the design, realization and measurements of an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). Proposed antenna provides different radiation patterns by proper configuration of the parasitic elements. Thus, several...
-
Comparative study of neural networks used in modeling and control of dynamic systems
PublicationIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...
-
Karolina Zielińska-Dąbkowska dr inż. arch.
PeopleKarolina M. Zielinska-Dabkowska, Ph.D., Eng. Arch., M. Arch., is an Assistant Professor at the Faculty of Architecture of Gdańsk University of Technology (GUT). In 2002, she completed her studies of Architecture and Urban Planning at Gdańsk University of Technology (Gdańsk Tech) and in 2004, Architectural Engineering at the University of Applied Sciences and Arts (HAWK) in Hildesheim, Germany. After graduation, she worked for several...
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublicationPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Rapid dimension scaling of triple-band antennas by means of inverse surrogate modeling
PublicationGeometry scaling of antennas, i.e., finding optimum dimensions of the structure for given operating conditions and material parameters is an important yet challenging problem. In this paper, we discuss fast dimension scaling of triple-band antennas with respect to operating frequencies. We adopt the inverse surrogate modeling approach where the surrogate model is a function of the three operating frequencies of the antenna and...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublicationDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Fast Multi-Objective Antenna Design Through Variable-Fidelity EM Simulations
PublicationA technique for fast multi-objective antenna optimization is introduced. A kriging interpolation surrogate constructed from sampled coarse-mesh EM simulations is utilized by multi-objective evolutionary algorithm (MOEA) to obtain the initial Pareto front approximation. The surrogate is defined in a subset of the original design space, determined by means of independently optimized individual objectives. Response correction techniques...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublicationA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Reliable Networks Design and Modeling
PublicationSłowo wstępne numeru specjalnego czasopisma Telecommunication Systems Journal
-
Design and modeling of reliable networks
Publication-
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
EM-Driven Multi-Objective Optimization of Antenna Structures in Multi-Dimensional Design Spaces
PublicationFeasible multi-objective optimization of antenna structures is presented. An initial set of Pareto optimal solutions is found using a multi-objective evolutionary algorithm (MOEA) working with a fast surrogate antenna model obtained by kriging interpolation of coarse-discretization EM simulation data. To make the surrogate construction computationally feasible in multi-dimensional design space, the space subset containing non-dominated...