Filters
total: 5379
-
Catalog
- Publications 4170 available results
- Journals 16 available results
- People 45 available results
- Projects 1 available results
- Laboratories 2 available results
- Research Equipment 1 available results
- e-Learning Courses 18 available results
- Events 1 available results
- Open Research Data 1125 available results
displaying 1000 best results Help
Search results for: electron number density
-
Porosity and shape of airborne wear microparticles generated by sliding contact between a low-metallic friction material and a cast iron
PublicationThe wear of brakes in transport vehicles is one of the main anthropogenic sources of airborne particulate matter in urban environments. The present study deals with the characterisation of airborne wear microparticles from a low-metallic friction material / cast iron pair used in car brakes. Particles were generated by a pin-on-disc machine in a sealed chamber at sliding velocity of 1.3 m/s and contact pressure of 1.5 MPa. They...
-
Blowing Kinetics, Pressure Resistance, Thermal Stability, and Relaxation of the Amorphous Phase of the PET Container in the SBM Process with Hot and Cold Mold. Part II: Statistical Analysis and Interpretation of Tests
PublicationThe technology of filling drinks without preservatives (such as fresh juices, iced tea drinks, and vitaminized drinks) is carried out using hot filling. Mainly due to the production costs and lower carbon footprint, polyethylene terephthalate (PET) bottles are increasingly used in this technology. In this paper, the main aim is to describe and interpret the results of statistical analysis of the influence of the temperature of...
-
Blowing Kinetics, Pressure Resistance, Thermal Stability, and Relaxation of the Amorphous Phase of the PET Container in the SBM Process with Hot and Cold Mold. Part I: Research Methodology and Results
PublicationThe technology of filling drinks without preservatives (such as fresh juices, iced tea drinks, vitaminized drinks) is carried out using hot filling. Mainly due to the production costs and lower carbon footprint, polyethylene terephthalate bottles, commonly called PET, are increasingly used in this technology. In this paper, the main aim is to describe the statistical analysis methodology of the influence of the temperature of the...
-
Weak forms of shadowing in topological dynamics
PublicationWe consider continuous maps of compact metric spaces. It is proved that every pseudotrajectory with sufficiently small errors contains a subsequence of positive density that is point-wise close to a subsequence of an exact trajectory with the same indices. Also, we study homeomor- phisms such that any pseudotrajectory can be shadowed by a finite number of exact orbits. In terms of numerical methods this property (we call it multishadowing)...
-
Number of statements issued regarding the intention to entrust the performance of work in 2008-2018, broken down by country of origin of migrants
Open Research DataThe declaration of the intention to entrust work (applicable in the years 2007-2017) and the declaration of entrustment of work (applicable since 2018) are instruments for legalizing the work of foreigners in Poland, which by the ease of meeting the procedural requirements are by far the most popular among economic migrants and their employers.
-
The generalized Suzuki model of the multipath fading channel
Open Research DataThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The generalized Suzuki fading envelope is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Towards understanding the role of peroxide initiators on compatibilization efficiency of thermoplastic elastomers highly filled with reclaimed GTR
PublicationThermoplastic elastomers based on recycled high density polyethylene (rHDPE) and styrene-butadiene-styrene (SBS) block copolymer were highly filled with reclaimed ground tire rubber (RR). The impact of various organic peroxides (dicumyl peroxide (DCP), benzoyl peroxide (BP) and di-tert-butyl peroxide (DB)), applied as free-radical initiators, on the processing, structure and performance properties of rHDPE/SBS/RR blends was investigated....
-
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublicationWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
The Suzuki model of the multipath fading channel
Open Research DataThe dataset contains the results of simulations that are part of the research on modelling the multipath fading in the communication channel. The Suzuki fading envelope is generated using the Monte-Carlo simulation (MCS) in the LabVIEW programming environment.
-
Cu-Doped Layered Double Hydroxide Constructs the Performance-Enhanced Supercapacitor Via Band Gap Reduction and Defect Triggering
PublicationLayered double hydroxides (LDHs) are regarded as the excellent electrode materials for supercapacitors because of their high theoretical capacitance and abundance. However, the poor conductivity and limited reaction kinetics of LDHs restrict their practical application severely. Herein, Cu is chosen from groups VIII/IB/IIB as dopants for Co-based LDH (CuCo-LDH). The designed metal–organic framework-derived hierarchical CuCo-LDH...
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
Tax discount for children deducted from income in selected EU countries, available according to the criterion of the number of children (in EUR) in 2017
Open Research DataDespite the far-reaching harmonization of collection mechanisms and the amount of VAT and excise duty rates in the European Union, individual countries, as a rule, conduct individual income tax policies, including a system of reliefs and exemptions. It is worth noting that, as shown below, each European Union country uses at least one method of supporting...
-
Killing kinetics analysis of C-1311 derivative with octaarginine (Compound 1-R8) against Candida albicans
Open Research DataThe datasets contain the results of killing kinetics analysis of imidazoacridinone derivative and fluconazole against C. albicans ATCC 10231. The suspensions of Candida albicans ATCC 10231 cells (500 µL) in RPMI 1640 at cell density of 104 cells /mL were added to 500 µL of RPMI 1640 medium with various concentrations of the compounds, corresponding...
-
Optoelectronic properties of curved carbon systems
PublicationSystematic investigation of optoelectronic properties of curved carbon systems has been performed and the results have been compared with the representatives of flat carbon systems. Moreover, the application of third order dispersion corrected density functional tight binding method (with third order corrections of self-consistent charges) including Becke-Johnson dumping (DFTB3-D3(BJ)) has been validated in order to obtain reliable...
-
An Experimental and Numerical Analysis of Water Hammer Phenomenon in Slurries
PublicationThe analysis of slurry transportation in pressure pipelines is important both from practical and theoretical point of view. Due to the nature of the medium, the number of problems arising in the course of design, operation, measurements and mathematical modeling is much higher compared to the cases where the flowing liquid is homogeneous. The equations describing the flow are more complex, and higher number of the parameters is...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
The K x-ray line structures of the 3d-transition metals in warm dense plasma
Publication -
K X-ray line energies as diagnostics of warm dense plasma
Publication -
Modeling of the K and L x-ray line structures for molybdenum ions in warm dense Z-pinch plasma
Publication -
The K X-ray line structures for a warm dense copper plasma
Publication -
Description of parameters of symmetrical prolate ellipsoid magnetic signature.
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Krzysztof Gierłowski dr inż.
PeopleKrzysztof Gierłowski received his Ph.D. degree in telecommunications from the Faculty of Electronics, Gdańsk University of Technology (GUT), Poland, in 2018. He is author or co-author of more than 80 scientific papers and reviewer for a number of conferences and journals. Krzysztof Gierłowski took part in major IT-oriented projects, including: EU-funded Polish Future Internet Engineering initiative, PL-LAB2020 Infrastructural...
-
Ionosphere variability II: Advances in theory and modeling
PublicationThis paper aims to provide an overview on recent advances in ionospheric modeling capabilities, with the emphasis in the efforts relevant to electron density variability. The discussion spans a wide range of model formulations (e.g., from purely empirical to physics-based ones and data-driven approaches) seeking for advances or gaps with regard to present challenges. This discussion is further supported by consideration of the...
-
Superconductivity of Ta-Hf and Ta-Zr alloys: Potential alloys for use in superconducting devices
PublicationThe electronic properties relevant to superconductivity are reported for bulk Ta-Hf and Ta-Zr body centered cubic alloys, in a large part to determine whether their properties are suitable for potential use in superconducting qbits. The body centered cubic unit cell sizes increase with increasing alloying. The results of magnetic susceptibility, electrical resistivity, and heat capacity characterization are reported. While elemental...
-
Wojciech Litwin prof. dr hab. inż.
People1992÷1996 - study on Mechanical Department at Gdansk University of Technology1996 – employed in the Faculty of Ocean Engineering and Ship Technology at the Gdansk University of Technology2004 – PhD2014 – habilitation2016 - vice dean for science at Faculty of Ocean Engineering2020 - dean of the Faculty of Ocean Engineering2021 - head of Institute of Naval Architecture He participated in a number of designing and research programs...
-
Methodology for determination of the selected mechanical properties of wood based on cutting tests
PublicationFrom kiln-dried spruce wood (with steam) as well as in natural conditions were randomly selected 8 samples. After determining the average dimensions, moisture content and density of the samples they have been cut on the frame sawing machine PRW15M for measurement of cutting power. Based on those results from a linear rela-tionship of cutting power versus feed per toot mechanical properties of wood such as facture toughness and...
-
Rapid and Green Separation of Mono- and Diesters of Monochloropropanediols by Ultrahigh Performance Supercritical Fluid Chromatography–Mass Spectrometry Using Neat Carbon Dioxide as a Mobile Phase
PublicationThis study demonstrates the effect of column selectivity and density of supercritical carbon dioxide (SC-CO2) on the separation of monochloropropanediol (MCPD) esters, known as food toxicants, using SC-CO2 without addition of cosolvent in ultrahigh performance supercritical fluid chromatography–mass spectrometry (UHPSFC-MS). This study shows that over 20 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) mono-...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.