Filters
total: 458
Search results for: antenna modeling
-
Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications
PublicationThis paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a...
-
Size-Reduction-Oriented Design of Compact CPW-Fed UWB Monopole Antenna
PublicationA structure and design optimization of compact CPW-fed UWB monopole antenna is presented. Explicit size reduction through constrained numerical optimization of all relevant geometry parameters of the structure leads to a very small footprint of only 321 mm2. At the same time, a very wide antenna bandwidth is achieved from 3.1 GHz to 17 GHz.
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Miniaturized uniplanar triple-band slot dipole antenna with folded radiator
PublicationA miniaturized uniplanar slot dipole for triple-frequency operation is presented. The antenna consists of a folded slot radiator with an increased number of degrees of freedom that allow for efficient size reduction. Rigorous electromagnetic (EM)-driven design optimization is applied in order to achieve the smallest possible size while maintaining acceptable levels of antenna reflection at the required operating frequencies. The...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
Direction-of-Arrival Estimation Using an ESPAR Antenna with Simplified Beam Steering
PublicationIn this paper, it has been shown, how electronically steerable parasitic array radiator (ESPAR) antenna, in which beam steering is done in a simple way, can be used for directionof- arrival (DoA) estimation of an unknown signal impinging the antenna. The concept is based on an ESPAR antenna having twelve parasitic elements, in which beam switching is realized by RF switches providing required loads to its parasitic elements. Numerical...
-
Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach
PublicationIn this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using lowprofile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely on received signal strength...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Calibration-Free Single-Anchor Indoor Localization Using an ESPAR Antenna
PublicationIn this paper, we present a novel, low-cost approach to indoor localization that is capable of performing localization processes in real indoor environments and does not require calibration or recalibration procedures. To this end, we propose a single-anchor architecture and design based on an electronically steerable parasitic array radiator (ESPAR) antenna and Nordic Semiconductor nRF52840 utilizing Bluetooth Low Energy (BLE)...
-
Low-Cost Open-Hardware System for Measurements of Antenna Far-Field Characteristics in Non-Anechoic Environments
PublicationExperimental validation belongs to the most important steps in the development of antenna structures. Measurements are normally performed in expensive, dedicated facilities such as anechoic chambers, or open-test sites. A high cost of their construction might not be justified when the main goal of antenna verification boils down to demonstration of the measurement procedure, or rough validation of the simulation models used for...
-
Enhancing Performance of Switched Parasitic Antenna for Localization in Wireless Sensor Networks
PublicationThis paper presents an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). The limitations of the existing design approach are illustrated, as well as perspectives and challenges of the proposed solution in relation to the localization in...
-
Wideband Radio Direction Finder Implemented in Software Defined Radio Technology
PublicationIn the paper a wideband radio direction finder (RDF) implemented in software defined radio (SDR) technology and the results of hardware layer research, including developed antenna switching unit (ASU), are presented. The results of tests of the devices, which are the part of the software defined radio platform (SDRP), and antenna switching unit, confirmed the possibility of using selected components in the final solution.
-
D-Band High Gain Planer Slot Array Antenna using Gap Waveguide Technology
PublicationA D-band high gain slot array antenna with corporate-fed distribution network based on gap waveguide structures is proposed at 140GHz. To overcome the fabrication challenges at such high frequency, the gap waveguide technology is deployed in which good electrical contact between different parts of the waveguide structure is not required. The proposed sub-array has four radiating slots that are excited by a groove gap cavity and...
-
Metamaterial-Based Series-Fed Antenna with High Gain and Wideband Performance for Millimeter Wave Spectrum Applications
PublicationThis paper presents a high-gain, wideband series-fed antenna designed for 5G millimeter-wave (MMW) applications. The structure employs a substrate-integrated waveguide (SIW)-based power splitter and metamaterials (MMs). The power divider functions effectively at 27.5 GHz, exhibiting an impedance bandwidth from 26.9–28.6 GHz. The series-fed dipole is assembled on the SIW-based power splitter, incorporating four dipoles with varying...
-
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublicationParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
Design Space Reduction for Expedited Multi-Objective Design Optimization of Antennas in Highly-Dimensional Spaces
PublicationA surrogate-based technique for efficient multi-objective antenna optimization is discussed. Our approach exploits response surface approximation (RSA) model constructed from low-fidelity antenna model data (here, obtained through coarse-discretization electromagnetic simulations). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. The cost of RSA model construction for multi-parameter...
-
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublicationA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Diagnostics of thermal processes in antenna systems of broadcast stations
PublicationDiagnostics is an important element associated with the operation of a radio antenna systems, allowing earlier detection of potential damage. Thermography is one of the diagnostic tools, which allows for non-invasive assessment of technical condition. It brings together both financial savings associated with the removal of the damage and the potential effects caused by it. The article presents an example of using a thermal imaging...
-
Compact antenna array comprising fractal-shaped microstripradiators
PublicationA design method of antenna array consisting of eight microstrip patches modified with Sierpinski fractal curves has been presented andexperimentally validated in this paper. Method proposed has enabled the achievement of considerable miniaturization of array length (26%),together with multi-band behavior of the antenna, which proves the attractiveness of presented design methodology and its ability to be implemented in more complex...
-
Fast Antenna Optimization Using Gradient Monitoring and Variable-Fidelity EM Models
PublicationAccelerated simulation-driven design optimization of antenna structures is proposed. Variable-fidelity electromagnetic (EM) analysis is used as well as the trust-region framework with limited sensitivity updates. The latter are controlled by monitoring the changes of the antenna response gradients. Our methodology is verified using three compact wideband antennas. Comprehensive benchmarking demonstrates its superiority over both...
-
RSS-Based DoA Estimation in 802.11p Frequency Band Using ESPAR Antenna and PPCC-MCP Method
PublicationIn this paper, the concept of direction of arrival (DoA) estimation using electronically steerable parasitic array radiator (ESPAR) antenna designed to operate in IEEE 802.11p vehicular communication standard has been investigated with respect to different possible elevation angles of a radio frequency (RF) signal impinging the antenna. To this end, two different possible sets of the 3D antenna radiation patterns have been used...
-
Automatic Correction of Non-Anechoic Antenna Measurements using Low-Pass Filters
PublicationPrototype measurements belong to key steps in the development of antenna structures. They are normally performed in expensive facilities, such as anechoic chambers (ACs). Alternatively, antenna performance can be extracted (at a low cost) in non-anechoic conditions upon appropriate post-processing. Unfortunately, existing correction algorithms are difficult to set up and prone to failure, which limits their practical usefulness....
-
Multi-Beam Antenna for Ka-Band CubeSat Connectivity Using 3-D Printed Lens and Antenna Array
PublicationIn this paper, the design of a passive multi-beam lens antenna is proposed for the CubeSat space communication system as an alternative application of a 2-D microstrip antenna array that has originally been designed for a 39 GHz 5 G MU-MIMO system. The half-ellipsoid lens is 3-D printed using stereolithography (SLA) technology. The antenna prototype is capable of selecting the main beam between 16 different directions with a gain...
-
Bayesian Optimization for solving high-frequency passive component design problems
PublicationIn this paper, the performance of the Bayesian Optimization (BO) technique applied to various problems of microwave engineering is studied. Bayesian optimization is a novel, non-deterministic, global optimization scheme that uses machine learning to solve complex optimization problems. However, each new optimization scheme needs to be evaluated to find its best application niche, as there is no universal technique that suits all...
-
Hybridization of the FDTD method with use of the discrete Green's function
PublicationIn this contribution, a hybrid technique is presented which combines the finite-difference time-domain (FDTD) method and the discrete Green's function (DGF) formulation of this method. FDTD is a powerful technique for the analysis of complex penetrable objects but its application is not efficient when the computational domain includes many free-space cells. Therefore, the hybrid method was developed which is applicable to complex...
-
Accurate Post-processing of Spatially-Separated Antenna Measurements Realized in Non-Anechoic Environments
PublicationAntenna far-field performance is normally evaluated in expensive laboratories that maintain strict control over the propagation environment. Alternatively, the responses can be measured in non-anechoic conditions and then refined to extract the information on the structure field-related behavior. Here, a framework for correction of antenna measurements performed in non-anechoic test site has been proposed. The method involves automatic...
-
Energy efficient beam control for 5G antennas
PublicationThe rapid development of 5G and beyond systems demands improvement in communication speed, latency and safety to maintain the required quality of service. This paper presents an overview of different concepts of energy-efficient antenna systems, which offer beam-shaping and beam-steering functionalities, that enhance connectivity performance and can be used in 5G applications. Different designs for 5.9 GHz, 39 GHz and 60 GHz frequency...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Constrained optimization for generating gain-bandwidth design trade-offs of wideband unidirectional antennas
PublicationBroadband unidirectional antennas realised in microstrip technology find applications in many wireless communication systems. One of their design challenges is the necessity of handling multiple performance figures which is difficult when using traditional design methods, largely based on parameter sweeping. This work presents a simple optimisation-based framework that permits generation of gain-bandwidth trade-off designs for...
-
Expedited optimization of antenna input characteristics with adaptive Broyden updates
PublicationSimulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise...
-
A Broadband Circularly Polarized Wide-Slot Antenna with a Miniaturized Footprint
PublicationThis letter presents a novel and simple feeding technique for exciting orthogonal components in a wide-slot antenna. In this technique, a rectangular bracket-shape parasitic strip is placed at the open end of the straight microstrip line to excite the fundamental horizontal and vertical components of the circular polarization (CP). The proposed technique—when employed in conjunction with the asymmetrical geometry of coplanar waveguide...
-
Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications
PublicationA new 60 GHz band single-input switched beam antenna is proposed for the fifth-generation (5G) millimeter-wave network applications. The presented design is capable of electronically switching the main beam in two different directions via a proposed microstrip-line-to-slotline single-pole dual-throw (SPDT) switch based on commercially available p-i-n diodes. The antenna is fabricated in a low-cost printed circuit board process...
-
Highly-Miniaturized Microfluidically-Based Frequency Reconfigurable Antenna Diplexer Employing Half-Mode SIRW
PublicationThis article introduces a super-miniaturized frequency reconfigurable antenna diplexer based on microfluidic techniques. The proposed structure is developed using a half-mode substrate-integrated rectangular waveguide (HMSIRW). The antenna architecture consists of two HMSIRW cavities loaded with L-shaped slots, which are excited by two microstrip feedlines to realize two distinct radiating frequency bands. The footprint of the...
-
Substrate Integrated Waveguide-Based Frequency-Tunable Self-Octaplexing Antenna
PublicationThis communication presents the first-ever substrate integrated waveguide (SIW)-based frequency-tunable self-octaplexing antenna (SOA) for wireless communication. The structure is arranged by implementing eight distinct patches with planar 50-ohm feedlines at the top of the SIW cavity, which realize eight distinct resonant frequencies. Independent tuning of each resonant frequency is achieved by incorporating appropriately allocated...
-
Dual-band Millimetre Wave MIMO Antenna with Reduced Mutual Coupling Based on Optimized Parasitic Structure and Ground Modification
PublicationIn this study, a high-isolation dual-band (28/38 GHz) multiple-input–multiple-output (MIMO) antenna for 5G millimeter-wave applications is presented. The antenna consists of two interconnected patches. The primary patch is connected to the inset feed, while the secondary patch is arc-shaped and positioned over the main patch, opposite to the feed. Both patches function in the lower 28 GHz band, while the primary patch is accountable...
-
Small Antenna Design Using Surrogate-Based Optimization
PublicationIn this work, design of small antennas using efficient numerical optimization is investigated. We exploit variable-fidelity electromagnetic (EM) simulations and the adaptively adjusted design specifications (AADS) technique. Combination of these methods allows us to simultaneously adjust multiple geometry parameters of the antenna structure of interest in a computationally feasible manner, leading to substantial reduction of the...
-
Patch size setup and performance/cost trade-offs in multi-objective EM-driven antenna optimization using sequential domain patching
PublicationPurpose This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures. Design/methodology/approach A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal...
-
UWB Microstrip Antennas on a Cylindrical Surfaces
PublicationConformal antennas are becoming popular due to their many advantages and possibilities of applications they offer. The advantages of using antennas with a curved surface arise not only from the possibility of integrating them with the object on which they are mounted on but also from the increase, relatively to planar antennas, of their visible angular range. The circular antenna arrays, or arrays of radiators located on the surface...
-
Ultra-Miniaturized HMSIW Cavity-Backed Reconfigurable Antenna Diplexer Employing Dielectric Fluids with Wide Frequency Tuning Range
PublicationThis communication presents an ultra-miniaturized two-way frequency tunable antenna diplexer based on cavity-backed slots and dielectric fluids. The proposed antenna utilizes two half-mode substrate-integrated rectangular cavities loaded with slots and fluidic pockets. The conventional size reduction is achieved by employing half-mode cavities, whereas ultra-miniaturization is obtained by applying the slots, which provides additional...
-
Asymmetrical-Slot Antenna with Enhanced Gain for Dual-Band Applications
PublicationDual-band operation is an important feature of antennas to be applied in modern communication systems. Although high gain of radiators is rarely of concern in urban areas with densely located broadcasting stations, it becomes crucial for systems operating in more remote environments. In this work, a dual-band antenna with enhanced bandwidth is proposed. The structure consists of a driven element in the form of an asymmetrical radiator/slot...
-
On Alternative Approaches to Design of Corporate Feeds for Low-Sidelobe Microstrip Linear Arrays
PublicationTwo design approaches, illustrated by simulations and measurements, aiming at a systematic computer-aided design of printed circuit feeds for low-sidelobe microstrip antenna arrays are described. The novelty of these approaches resides in identification of the optimal feed architectures with subsequent simulation-based optimization of the feed and array aperture dimensions. In this work, we consider microstrip corporate feeds realizing...
-
Design and Optimization of Metamaterial-Based 5G Millimeter Wave Antenna for Gain Enhancement
PublicationIn this brief, a low profile, broadband, high-gain antenna array based on optimized metamaterials (MMs) with dual-beam radiation is reported for 5G millimeters wave (mm-wave) applications. The design is a simple bow tie operating at a 5G band of 28 GHz. It consists of two bow ties with substrate integrated waveguide (SIW)-based power splitter. A broad impedance bandwidth of 26.3−29.8 GHz is obtained by appropriately combining the...
-
Novel structure and design of compact UWB slot antenna
PublicationIn this paper, a novel structure of a compact UWB slot antenna is presented along with a simulation-driven design optimization algorithm for adjusting geometry parameters of the device. Our primary objective is to obtain small footprint of the structure while maintaining its acceptable electrical performance. It is achieved by introducing sufficiently large number of geometry degrees of freedom, including increased number of parameterized...
-
User Mobility’s Influence on System Loss in Off-Body BAN Scenarios
PublicationIn this paper, a measurement campaign for off-body communications in an indoor environment is investigated for a set of on-body antennas. The channel impulse response was measured with the user approaching and departing from an off-body fixed antenna using two user dynamics: standing at fixed positions and walking. The processing of the measurement data allowed to evaluate system loss statistics. Different antenna configurations...
-
Mobility’s Influence on System Loss in Off-Body BAN Scenarios
PublicationIn this paper, a measurement campaign for off body communications in an indoor environment is investigated for a set of on-body antennas. The channel impulse response was measured with the user approaching and departing from an off-body fixed antenna using two user dynamics, standing at fixed positions and walking. The processing of the measurement data allowed to evaluate system loss statistics. Different antenna configurations...
-
Rapid design closure of linear microstrip antenna array apertures using response features
PublicationA simple yet reliable approach to a rapid design closure of linear antenna array apertures at the electromagnetic (EM)-simulation level is proposed. Our methodology exploits an underlying array factor (AF) model suitably corrected by means of characteristic points (angles and levels) of the radiation pattern of the EM model of the antenna array aperture. This conveniently allows for controlling both the side lobe levels...
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublicationIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Comprehensive dimension scaling of multi-band antennas for operating frequencies and substrate parameters
PublicationIn this paper, low-cost and comprehensive redesign of multi-band antennas with respect to the operating frequencies and material parameters of the substrate is presented. Our approach exploits an inverse surrogate model identified based on a set of reference designs optimized at the level of coarse-discretization EM simulations of the antenna at hand. An iterative correction procedure is also implemented to account for the initial...
-
A structure and simulation-driven design of compact CPW-fed UWB antenna
PublicationIn this letter, a structure of a miniaturized ultra-wideband CPW-fed antenna and its design proce-dure are presented. The antenna is a modified version of the design previously proposed in the literature, with additional degrees of freedom introduced in order to improve the structure flexibility. The small size is achieved by executing a rigorous optimization procedure that consists of two stages: (i) smart random search carried...
-
On the approximation of the UWB dipole elliptical arms with stepped-edge polygon
PublicationA simple method of approximation of the ellipticalpatch with stepped-edge polygon is proposed as an introductionto wider studies over the planar ultrawideband (UWB) antennas.The general idea is to replace the elliptical patch with an equivalentpolygonal patch, with minimum loss in the performance. Theprinciples of the proposed method are presented in this letter, aswell as the results of performed numerical studies and its experimentalverification....