Search results for: LASER WELDS, FEM, FEA
-
Karol Niklas dr hab. inż.
PeopleKarol NIKLAS is a university professor at Gdansk University of Technology (Faculty of Mechanical Engineering and Ship Technology, Institute of Naval Architecture). He defended his master's thesis on Naval Architecture, specialty Design of vessels and yachts in 2007. In 2008, he completed postgraduate studies in the specialty 'Novel Simulation Methods in Engineering' at the Faculty of Applied Physics and Mathematics. In 2014 awarded...
-
The effect of numerical 2D and 3D FEM element modelling on strain and stress distributions at laser weld notches in steel sandwich type panels
PublicationLike other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack...
-
Influence of the notch rounding radius on estimating the elastic notch stress concentration factor in a laser welded tee joint
PublicationIn recent years an increased interest of industry in sandwich-type metal structures can be observed. These structures consist of thin plates of 2.5 mm in thickness separated by stiffeners of different shapes and forms. Welds joining the plates and stiffeners are made on the outer side of the plates using laser welding technique. A locally focused source of heat causes the plate to melt creating a very narrow and elongated joint....
-
The initial FEM model of the dome assembled in SOFiSTiK FEA (2020) software
Open Research DataThis dataset consists of an archive with the (selected) files of the initial FEM model of the dome assembled in SOFiSTiK FEA (2020) software.
-
The determination of deformations and stresses of laser welds used for fatigue assessment of steel sandwich panel joints
PublicationPanele typu sandwich znajdują szerokie zastosowanie w wielu gałęziach przemysłu. W przypadku niektórych zastosowań wymagających ocenę ryzyka dużą rolę odgrywa ocena trwałości zmęczeniowej spoin laserowych paneli. W pracy prezentowane są metody wyznaczania lokalnych odkształceń i naprężeń w połączeniach spawanych w celu oceny trwałości zmęczeniowej według hipotez lokalnych naprężeń i odkształceń.
-
The Influence of Selected Parameters of Numerical Modelling on Strains and Stresses at Weld Toe Notch
PublicationLatest development in the field of welding technology and prefabrication enabled massive production of thin-walled sandwich structures. Multi-layered sandwich structures are fabricated with the use of high-power CO2 lasers, friction welding, arc welding, hybrid welding, or other technique designed for the special purpose. Steel or aluminium alloy plates with thickness between 1 and 5 mm are connected by internal stiffeners. Strength...
-
Adhesive compliance effect in mode I separation:Profilometry approach
PublicationThe effect of adhesive compliance on the deflection of a loaded, bonded beam was studied using laser profilometry. Experimental data obtained were compared with both Euler-Bernoulli (encastré) and Winkler (one parameter elastic foundation) models. A third, analytical, 2D model, based on shear within the adhesive layer (two parameter elastic foundation), was introduced. Finite element analysis (FEA) was also used to study the effect...
-
FEM modelling of stress and strain distribution in weld joints of steel sandwich panels
PublicationThe development of laser welding technology has enabled the mass production of thin-walled structures, including steel sandwich panels. The technology of joining plating panels with stiffeners by welding allows us to create joints with a specific geometry and material properties. In comparison with other types of joints, laser welds are characterized by their specific behaviour under cyclic load and, as a consequence, a different...
-
Non-Destructive Testing of the Longest Span Soil-Steel Bridge in Europe—Field Measurements and FEM Calculations
PublicationThe article describes interdisciplinary and comprehensive non-destructive diagnostic tests of final bridge inspection and acceptance proposed for a soil-steel bridge made of corrugated sheets, being the European span length record holder (25.74 m). As an effect of an original concept a detailed and precise information about the structure short-term response was collected. Periodic diagnostics of bridge deformations was done one...
-
Finite element modelling of a historic church structure in the context of a masonry damage analysis
PublicationThe paper includes a case study of modelling a real historic church using the finite element method (FEM) based on laser scans of its geometry. The main goal of the study was the analysis of the causes of cracking and crushing of masonry walls. An FEM model of the structure has been defined in ABAQUS. A non-linear dynamic explicit analysis with material model including damage plasticity has been performed. A homogenization procedure...
-
Testing of the longest span soil-steel bridge in Europe – new quality in measurements
PublicationThe article describes interdisciplinary and comprehensive diagnostic tests of final bridge inspection and acceptance proposed for a soil – steel bridge made of corrugated sheets, being the European span length record holder (25.74 m). As an effect of an original concept a detailed and precise information about the structure response was collected. The load test design was based on the nonlinear numerical simulations performed by...
-
Finite element models used in diagnostics of transverse cracks in bridge approach pavement
Open Research DataTransverse cracks in the asphalt pavement were observed on bridge structures next to single-module expansion joints with a 5 meter approach slab set at the depth of 1 m. The finite element (FE) models of the approach pavement were created to investigate the reasons of premature cracking and crack initiation mechanism over the back edge of the abutment...
-
CFD and FEM model of an underwater vehicle propeller
PublicationDuring the project execution of design and optimization the Remotely Operated Vehicle (ROV) research on its propulsion has been carried out. The entire project was supported by CFD and FEM calculations, which taking into account the characteristics of underwater vehicle. One of the tasks was to optimize the semi-open duct for horizontal propellers, which provided propulsion and controllability in horizontal plane. In order to...
-
Comparison of strain results at a laser weld notch obtained by numerical calculations and experimental measurements
PublicationIn the development of ship structures applying new materials and it’s purposeful placement play an important role. During the last years, especially in a construction of ro-ro type vessels, the usage of novel sandwich structures in cargo decks is profitable. Steel sandwich panel is an innovative solution which at a todays state of development can be used for the construction of any members not taking part in a global bending of...
-
Nondestructive Testing of the Miter Gates Using Various Measurement Methods
PublicationWhen any problems related to civil engineering structures appear, identifying the issue through the usage of only one measuring method is difficult. Therefore, comprehensive tests are required to identify the main source. The strains and displacement measurements, as well as modal identification, are widely used in the nondestructive testing of structures. However, measurements are usually carried out at several points and confirm...
-
ESTIMATION OF YOUNG`S MODULUS OF THE POROUS TITANIUM ALLOY WITH THE USE OF FEM PACKAGE
PublicationPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs...
-
Effects of preheating on laser beam–welded NSSC 2120 lean duplex steel
PublicationDuplex stainless steels show sustainable alternative for the conventional austenitic grades, with higher strength, higher resistance against stress corrosion cracking, and lower purchase cost. Thus, duplex stainless steel gains more attention in construction, oil and gas, and chemical industries. Among duplex stainless steels, low nickel and low molybdenum alloyed lean duplex stainless steel are a cost-efective substitution of...
-
Influence of Added Water Mass on Ship Structure Vibration Parameters in Virtual and Real Conditions
PublicationModelling of ship structures in a virtual environment is now standard practice. Unfortunately, many engineers forget to consideri the influence of added water on the frequency values and the amplitude of natural vibrations. The article presents the effect of water damping on the frequency values of the individual natural vibration modes. The tests were carried out in two stages. First, the mentioned values were determined using...
-
On the necessity of experimental verification of numerical results in biomedical applications
PublicationPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can be easily produced by stereolitography techniques, e.g. selective laser melting (SLM). Numerical techniques, like finite element method (FEM) have great potential in testing new, even the most sophisticated designs, according to their mechanical properties, i.e. strength or stiffness. However, due to different...
-
Fracture Energy of Bonded Joints with 2D Elastic Adhesive Layer
PublicationWhen bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hooke elastic layer. In the case of 1D elastic layer, represented as Hookes spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Nondestructive methods complemented by FEM calculations in diagnostics of cracks in bridge approach pavement
PublicationNondestructive methods of road pavement diagnostics are an alternative to traditional approach to pavement failure investigation. The article presents a detailed multidisciplinary inspection carried out using ground-penetrating radar (GPR), laser scanning technology and finite element method (FEM) calculations. It was done in order to assess the factors that contributed to occurrence of premature cracks of a bridge approach pavement....
-
Detection of Delamination in Laminate Wind Turbine Blades Using One-Dimensional Wavelet Analysis of Modal Responses
PublicationThis paper demonstrates the effectiveness of a nondestructive diagnostic technique used to determine the location and size of delamination in laminated coatings of wind turbine blades. This is realized based on results of numerical and experimental investigations obtained by the use of the finite element method (FEM) and laser scanning vibrometry (LSV). The proposed method is based on the one-dimensional continuous wavelet transform...
-
The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
PublicationThis article introduces shape deformation as a new approach to the computer-aided design (CAD) of high-frequency components. We show that geometry deformation opens up new design possibilities and offers additional degrees of freedom in the 3-D modeling of microwave structures. Such design flexibility is highly desirable if the full potential of additive manufacturing (AM) is to be exploited in the fabrication of RF and microwave...
-
Bridge Non-Destructive Measurements Using a Laser Scanning during Acceptance Testing: Case Study
PublicationOwing to the recent proliferation of inventory works on roads and railways, bridge acceptance tests have increased exponentially. These tests’ results are often misinterpreted owing to the use of various measuring equipment types, rendering integrated interpretation problematic. It is also problematic that adjusting the measurement method is difficult when the structure’s response to load is uncertain. Therefore, it is important...
-
Image-based numerical modeling of the tensile deformation behavior and mechanical properties of additive manufactured Ti–6Al–4V diamond lattice structures
PublicationThis work concerns the numerical modeling of the deformation process and mechanical properties of structures obtained by the additive method laser power bed fusion (LPBF). The investigation uses diamond structures of Ti–6Al–4V titanium implantation alloy with various relative densities. To model the process of tensile deformation of the materials, geometric models were used, mapping the realistic shape of the examined structures....
-
A three-dimensional periodic beam for vibroacoustic isolation purposes
PublicationThis paper presents results of investigations on a three-dimensional (3-D) isotropic periodic beam. The beam can represent a vibroacoustic isolator of optimised dynamic characteristics in the case of its longitudinal, flexural and torsional behaviour. The optimisation process concerned both the widths as well as the positions of particular frequency band gaps that are present in the frequency spectrum of the beam. Since the dynamic...