Filters
total: 103
Search results for: LINEAR ACTUATORS
-
Research on Linear Actuators for Active Foil Bearings
PublicationActive foil bearings are a kind of gas foil bearing. They contain actuators which allow for modification of the bearing sleeve size and the shape of the lubrication gap. Rotor vibrations can be actively controlled by these changes. It is possible, among other things, to reduce the starting torque, control the vibration amplitude at different speeds and improve operational safety. Prototypes of active foil bearings are being developed...
-
Static Shape and Stress Control of Trusses with Optimum Time, Actuators and Actuation
PublicationTraditional shape and stress control of structures use many actuators and require enormous time to find reasonable solutions that need designers to input specific target displacement and stress. This study employs a linear technique to static shape and stress control of pin-jointed assemblies as a theoretical advancement to prior works and provides a comparative analysis against previously established works. The study evaluates...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 500 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 200 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 50 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Open Research DataThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Free Vibration of Flexomagnetic Nanostructured Tubes Based on Stress-driven Nonlocal Elasticity
PublicationA framework for the flexomagneticity influence is here considered extending the studies about this aspect on the small scale actuators. The developed model accommodates and composes linear Lagrangian strains, Euler-Bernoulli beam approach as well as an extended case of Hamilton’s principle. The nanostructured tube should subsume and incorporate size effect; however, for the sake of avoiding the staggering costs of experiments,...
-
DYNAMIC POSITIONING CAPABILITY ASSESSMENT BASED ON OPTIMAL THRUST ALLOCATION
PublicationThe article presents an efficient method of optimal thrust allocation over the actuators in a dynamically positioned ship, according to the DNV-ST-0111 standard, Level 1. The optimisation task is approximated to a convex problem with linear constraints and mathematically formulated as quadratic programming. The case study is being used to illustrate the use of the proposed approach in assessing the DP capability of a rescue ship....
-
An application for a new type of pneumatic engine concept
PublicationHeavy trucks are often equipped with loading and unloading systems like dock levellers with swing lip or telescopic lip. Most of these devices require hydro-electrical energy supply systems (eg. the pump that presses the working substance to the actuators must be propelled by electric engine.) The space taken by pump with electric engine can be reduced on condition that a new type of pneumatic drive will be considered. It is possible...
-
Multiprocessor Implementation of Parallel Multiobjective Genetic Algorithm for Optimized Allocation of Chlorination Stations in Drinking Water Distribution System a New Water Quality Model Approach
PublicationThe Critical Infrastructure Systems (CISs) have received in recent years a considerable attention due to their heavy impact on sustainable development of modern societies. Most CISs may be classied as large scale complex systems of network structure, in uenced by strong interactions form the surrounding environment, internal and external interconnections. The later is a result of inter-CIS dependencies. The control, monitoring...
-
Sphere Drive and Control System for Haptic Interaction With Physical, Virtual, and Augmented Reality
PublicationA system for haptic interaction with physical, virtual, and augmented realities, founded on drive and measurement elements (DMEs), is considered. The system consists of eight DME rolls equipped with linear actuators, able to measure their angular velocity, drive the sphere, and adjust downforce (pressing the roll against the sphere). Two modeling issues are addressed. Special effort is put in to compensate for various technical...
-
Serial control of CNC machines
PublicationIn this paper a new method of the serial control of CNC machines is proposed. Actuators are controlled locally and the role of the central computer is limited to sending commands to the controller instead of sending it directly to actuators. It has been achieved with the use of the serial protocol with the use of the USB port. The taken approach leads to more reliable operation because commands are buffered and no synchronization...
-
Electrostatic Zipping Actuators—Analysis of the Pull-In Effect Depending on the Geometry Parameters
PublicationContinuous work on a new generation of actuators, referred to as artificial muscles, resulted in the initiation of work on electrostatic zipping actuators, the concept of which is derived from micro electro-mechanical devices. Despite partial knowledge of their basic operating parameters, a question remains whether electrostatic zipping actuators are able to meet the expectations in the context of generated forces and control possibilities....
-
On a 3D material modelling of smart nanocomposite structures
PublicationSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
A Review: Structural Shape and Stress Control Techniques and their Applications
PublicationThis review article presents prior studies on controlling shape and stress in flexible structures. The study offers a comprehensive survey of literature concerning the adjustment and regulation of shape, stress, or both in structures and emphasizes such control’s importance. The control of systems is classified into three primary classes: nodal movement control, axial force control, and controlling the two classes concurrently....
-
Multi-DBD actuator with floating interelectrode for aerodynamic control
PublicationIn this paper the use of a floating inter-electrode in a multi-DBD (dielectric barrier discharge) plasma actuator is described. The multi-DBD plasma actuators with floating inter-electrodes were investigated to get a longer DBD on a dielectric surface and to maximise generated net airflow. Our actuator was used to control the boundary layer flow separation around NACA0012 airfoil model. The results of our investigations suggests...
-
Mechatronics design, modelling and controlling of the Stewart-Gough platform
PublicationThis paper presents a mechatronics design of a low cost Stewart-Gough platform (SGP) with rotary actuators. The designed SGP is supposed to be applied in a ball & plate control system. The synthesis of the ball & plate control system is also within the subject of the paper. A mechatronics design process of the SGP was conducted with computer-aided design (CAD) software. Unique analytical solutions of an inverse kinematics problem...
-
On the problem of optimised allocation of water quality sensors and actuators in DWDS
PublicationThe problems of water quality sensors and actuators placement in drinking water distribution systems (DWDSs) are addressed as separate, primarily. However, against the background of control systems theory, the nature of DWDSs dynamics indicates that these both problems are interdependent and impact the design of related water quality monitoring and control structures and algorithms. The research work presented in this paper is...
-
FEA analysis of the multicell piezoelectric motor
PublicationThe presented paper concerns a design, modeling and chosen tests of the prototype multicell piezoelectric motor (MPM). The principle of operation based on three independent traveling wave actuators is presented. The main materials and technologies used in the fabrication process are described. The structure of the motor is modeled using static and modal FEM analysis. The process of traveling wave generation in the MPM structure...
-
Design, modelling and analysis of a new type of piezoelectric motor. Multicell piezoelectric motor
PublicationThis paper describes a new type of piezoelectric motor. The results, obtained in the field of piezoelectric motors, have pointed out that these motors have potentially high possibilities in the future special applications. The research work presents the design, simulations and parameters of the piezoelectric motor with three rotation-mode actuators. The motor is characterized by a high power, relative high speed and torque. The...
-
Optimum number of actuators to minimize the cross-sectional area of prestressable cable and truss structures
PublicationThis paper describes a new computational method for determining the optimum number of actuators to design the optimal and economic cross-sectional area of pin-jointed assemblies based on the conventional force method. The most active members are selected to be prestressed to redistribute stress in the whole structure, resulting in regulating the internal force of bars that face high stress. Reducing stress in critical members allows...
-
New concept and analysis of the multicell piezoelectric motor
PublicationThis work presents the design, modeling and tests of the prototype multicell piezoelectric motor (MPM). A new concept of the electromechanical structure of the considered prototype is based on three rotating-mode actuators. The electromechanical structure of each actuator has been considered as an independent one - referred to as a ”single cell” (single actuator). Combined three resonant actuators generate three traveling waves...
-
Hybrid piezoelectric motor based on electroactive lubrication principle
PublicationA novel conception of hybrid piezoelectric motor is presented in this paper. Proposed conception required synchronised work of quasi-static and resonant piezoelectric actuators that results in a rotary movement. The motor's working principle is explained and the main characteristics are described. Studied topology is compared to the existing piezoelectric motors with regards to its field of applications. The assembling process...
-
Chosen Analysis Results Of The Prototype Multicell Piezoelectric Motor
PublicationThis paper presents the design, modeling and tests of the prototype multicell piezoelectric motor (MPM). A new concept of the electromechanical structure of the considered prototype is based on three rotating-mode actuators. The electromechanical structure of each actuator has been considered as an independent one - referred to as a “single cell” (single actuator). Combined three resonant actuators generate three traveling waves...