Filters
total: 7996
filtered: 580
-
Catalog
- Publications 5499 available results
- Journals 27 available results
- People 386 available results
- Inventions 55 available results
- Projects 89 available results
- Laboratories 4 available results
- Research Teams 31 available results
- Research Equipment 4 available results
- e-Learning Courses 988 available results
- Events 33 available results
- Open Research Data 880 available results
Chosen catalog filters
Search results for: PANELE WARSTWOWE
-
Tagged images with LEGO bricks - Panels
Open Research DataThe set contains images of LEGO bricks (from Panels category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Panels
Open Research DataThe set contains images of LEGO bricks (from Technic Panels category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Video of LEGO bricks on conveyor belt - Tiles and panels
Open Research DataThe set contains videos of LEGO bricks (tiles, panels, etc.) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final...
-
Guided wave propagation signals measured on corroded stiffened panels
Open Research DataThe fundamental antisymmetric Lamb mode was excited by piezoelectric transducers attached at the pre-selected points on stiffened panels, representing typical structural ship components. The specimens were exposed to accelerated marine corrosion degradation, so the signals were collected to analyze the influence of the degree of degradation on the wave...
-
Alms-panel of Anton Moeller in St. Mary's Church in Gdańsk
Open Research DataThe data set concerns epigraphy. It refers to the Alms-panel placed in St. Mary’s Church in Gdańsk, that is the work of Gdańsk painter Antoni Moller, made in 1607, or rather – to be more specific – to lower part of this work, which are the verses from Holy Bible. Data set contains one general photo of the inscription, transcription of its text in Latin...
-
GC Chromatograms for isomerization of alpha-pinene
Open Research DataData contain results of the catalytic tests for the isomerization of alpha-pinene for the Ti3C2Tx MXenes produced via acidic etching aluminum from MAX Phase (Ti3C2-Al-Ti3C2-Al-Ti3C2) using different etching agents, HF/HCl and HF/H2SO4 with different weight ratios (1:3, 1:4, and 1:5). The samples were labeled as MXene HF/HCl X:Y and MXene HF/H2SO4 X:Y,...
-
Aspicilia lutzoniana
Open Research DataAspicilia lutzoniana Rodr. Flakus, Szczepańska & Flakus, is a novel freshwater species from Bolivian high mountains. The species is named in honour of François Lutzoni (Durham, USA), our friend and the prominent Canadian-born lichenologist, for his magnificent contribution to knowledge on the phylogenetics and evolution of lichen symbioses, including...
-
LDRAW based positional renders of LEGO bricks
Open Research Data243 different LEGO bricks renders of size 250x250 in 5 colors in 120 viewing angles stored as JPEG images. The renders are used to train neural networks for bricks recognition. All images were generated using L3P (http://www.hassings.dk/l3/l3p.html) and POV-Ray (http://www.povray.org/) tools and were based on the 3D models from LDraw (https://www.ldraw.org/)...
-
Laser scanning point clouds of a 32-meter radiotelescope located in the radioastronomical observatory in Piwnice (Poland)
Open Research DataThis dataset contains laser scanning point clouds of a 32-meter RT4 radiotelescope located in the radioastronomical observatory in Piwnice in Poland. Measurements were performed on 18th May 2018 using two laser scanners: Leica P40 (shared by Leica Geosystems Poland) and Riegl VZ400 (shared by Geotronics Dystrybucja Sp. z o.o.). The cloud points from...
-
The BDD electrodes wettability modification by anodic polarization treatment
Open Research DataThe dataset contains the raw images, photographs obtained for the contact angle measurement at the surface of the boron-doped diamond (BDD) electrode. The measurements were carried out on after potentiodynamic polarization procedure, at various anodic polarization scan range (no polarization - HTBDD; 1.0 V; 1.4 V; 1.9 V; 2.5 V vs Ag|AgCl, scan rate...
-
Results of experimental research of hydraulic satellite motor
Open Research DataThe study of the flow rate in the motor and the torque on the motor shaft at low constant speed were carried out.The file contains measurement data of the torque on the motor shaft and the flow rate in the motor as a function of the angle of shaft rotation at various constant pressure drops in the motor.
-
Simulation of ship spiral test for ballast and full load conditions
Open Research DataThe data show the results of the spiral test for the simplified ship model, taking into account two states of loading: ballast and full load. The data set contains the results of time simulation for sea state 10 on the Beaufort scale: changes in rudder angle delta_tab[deg]; angular velocity r_tab[deg/s]; surge velocity u_tab (m/s); sway velocity v_tab...
-
Results of research on the SME sector in the context of applying tax reliefs
Open Research DataThis dataset presents the quantitative results of the survey conducted in the period June 2019 - April 2020. In total, 274 completed survey questionnaires were obtained.
-
Mechanical durability and electroanalytical performance of 3D-printed multi-material sensors
Open Research DataThe data set consists tensile strength, electric resistance, electrochemical characteristics and physicochemical studies of multi-material 3D printed systems, including their sensing performance during detection of antibiotics in an industrial sewage. Additionally, contact angle measurements and SEM micrographs of the electrode surfaces were included.
-
Simulation of ship turning circle test for ballast and full load conditions
Open Research DataThe data show the results of the turning circle spiral test for the simplified ship model, taking into account two states of loading: ballast and full load. During the circulation test, the manoeuvrability of the vessel is tested.
-
Results of wettability evaluation of acrylic bone cements incorporating various components
Open Research DataThe database contains the images of the contact angle measurements of modified bone cements using the optical tensiometer. The following modifications were evaluated: the addition of biodegradable components (including chitosan, cellulose, tricalcium phosphate, polydioxanone or magnesium), the addition of bioactive components (bioglasses) or the addition...
-
Individual investors willingnes to invest in ESG in Poland survey results
Open Research DataThis dataset encompasses Polish citizens, including those being retail investors, attitude toward climate change and ESG investment. Dataset of two waves of the omnibus survey which provides representative database for Poland for February 2021. A specialized polling institute, was subcontracted to conduct the survey using Computer-Assisted Web Interviewing...
-
Dual drive control under SVPWM, experimental results
Open Research DataThe dataset contains the experimental results of the project: A universal algorithm of space vector pulse width modulation for three-level three and multi-phase NPC inverters with DC-link voltage balancing. The analysis includes the behaviour of the drive system, examining the dynamic system response to speed and angle changes, and encompassing data...
-
Experimental Study of the Influence of Noise Level on the Uncertainty Value in a Measurement System Containing an Analog-to-Digital Converter
Open Research DataFor newly developed measuring systems it is easy to estimate type B uncertainties based on the technical data of the measuring modules applied. However, it is difficult to estimate A type un-certainties due to the unknown type and level of interferences infiltrating into the measuring sys-tem. This is a particularly important problem for measurements...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.