Filtry
wszystkich: 3088
wybranych: 290
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: EFFECTIVE PARTICLE DENSITY
-
Rain Gardens SW particle size analysis dataset
Dane BadawczeThis dataset contains the results of laser diffraction particle size analysis of storm water runoff and storm water quality in rain garden units. Samples were collected from 4 different rain gardens in Gdansk, Poland.
-
Determination of the effective concentration of ketoprofen against the germination of Sorghum bicolor (sorghum) seeds
Dane BadawczeResearch data includes an attempt to determine the effective concentration of ketoprofen that inhibits germination of Sorghum bicolor (sorghum) seeds.
-
The impact of carbon black particle size on curing characteristics of GTR modified with bitumen
Dane BadawczePresented data shows an impact of particle size of GTR and three different loadings of carbon black on curing characteristics of GTR modified with bitumen. Samples were prepared using a two-roll mill – all in the same manner. After 24 hours of stabilization at ambient conditions they were submitted to the curing analysis via Rheometer Monsanto 100S....
-
Particle size distribution (laser granulometry) of pristine bismuth oxide (Bi2O3) and gadolinium oxide (Gd2O3) structures
Dane BadawczeData contain raw results of particle size distribution (by volume) of Bi2O3 and Gd2O3 particles determined using a laser diffraction method (Malvern Mastersizer 2000, Worcestershire, UK).
-
Compressive strength and density of cement pastes containing iron oxide (Fe3O4) nanoparticles (nanomagnetite)
Dane Badawcze*.ODS - open-data source spreadsheet - Dataset presenting:
-
Autocorrelation function for the chosen effective potential of the diatomic silver anion
Dane BadawczeThe process of a two-channel decay of the diatomic silver anion (Ag2-), namely the spontaneous electron ejection giving Ag2 + e- and the dissociation leading to Ag- + Ag is theoretically studied. The ground state potential energy curves (PECs) of the neutral silver dimer and anionic silver diatomic molecule are calculated using the single reference...
-
X-ray diffraction (XRD) and particle size distribution (PSD) data of iron oxide (Fe3O4) - magnetite particles
Dane BadawczeDataset presenting X-ray diffractogram and particle size distribution of nanomagnetite (Fe3O4) iron oxide particles purchased from Sigma Aldrich (637106).X-ray diffraction study was performed with a PRO X-ray diffractometer (X’Pert PRO Philips diffractometer, Co. Ka radiation, Almelo, Holland), while PSD was determined using laser diffraction technique...
-
The power spectral density of audible noise and electric disturbances in ship’s electrical drive systems with frequency converters
Dane BadawczeThe presented dataset is part of research focusing on the impact of the ship's electrical drive systems with frequency converters on vibrations and the level of audible noise on ships.
-
Determination of the effective concentration of oxyteracycline solutions on the inhibition of bioluminescence of Vibrio fischeri (Microtox)
Dane BadawczeIn this study an attempt was made to determine the effective concentration for oxytetracycline solutions on the inhibition of bioluminescence of Vibrio fischeri (Microtox).
-
Effect of particle size of aluminosilicate microspheres on the change of hydration heat of cement mortars and selected physical, chemical, and mechanical properties.
Dane BadawczeThis subject of the work is the study of selected properties of cement mortars containing two fractions of aluminosilicate microspheres with grain size in the range of 125 to 250 μm and from 250 to 500 μm. Mortar mixtures with ordinary Portland cement (OPC 42.5R) and three substitution rates of cement by microspheres, 1.5%, 3.5%, and 5.0%, were investigated....
-
Open porosity and oven-dry density of concretes containing magnetite aggregate (M0-M100) mixes
Dane BadawczeRaw data for determination of open porosity and oven-dry densities of concretes containing different amount of magnetite aggregate (M0-M100) mixes. Sample designation is related to the publication associated with dataset.
-
The corrosion studies of 3,4,5-trihydroxybenzoic acid as an effective corrosion inhibitor of low alloy steel
Dane BadawczeThe dataset contains the electrochemical studies evaluating if gallic acid is a corrosion inhibitor for low alloy steel. Three measurements were carried out each case; corrosion potential (label ecorr), electrochemical impedance spectroscopy (label eis) and cyclic polarization (label cp). The measurements were carried out in sodium chloride, acidified...
-
Potential energy curve, rovibrational energies and nuclear wave functions of 2 singlet Pi state in KLi dimer
Dane BadawczeThis data sets contains potential energy curve, energy levels and nuclear wave functions of rovibrational states of KLi dimer in 2 singlet Pi electronic state. Potential energy curve (PEC) for the electronic state was calculated in the Born-Oppenheimer approximation by the means of effective core potentials and MRCI method. Nuclear wave functions and...
-
Data recorded for the purpose of the 3D sound intensity visualization around the organ pipe (des sound)
Dane BadawczeThe set contains data recorded using the Cartesian robot and multichannel acoustic vector sensor (from Microflown) for the purpose of the 3D sound intensity visualization of radiated acoustic energy around the organ pipe.
-
Monitoring of Explosive Nitroaromatic Tetryl
Dane BadawczeSource data used for the publication entitled "sp2-rich Dendrite-like Carbon Nanowalls as Effective Electrode for Environmental Monitoring of Explosive Nitroaromatic Tetryl".1. SEM files2. TEM files3. XPS files4. Electrochemical measurements5. Raman files
-
Ball on disk test AL(rf.)-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 not treated (reference).
-
Ball on disk test AL(rf.)-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 not treated (reference).
-
Ball on disk test AT4_11-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT4_11).
-
Ball on disk test AT3_21-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT3_21).
-
Ball on disk test AW4_1-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 WC powder injected (AW4_1).
-
Ball on disk test AT4_4-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT4_4).
-
Ball on disk test AW4_11-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 WC powder injected (AW4_11).
-
Ball on disk test AT4_1-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT4_1).
-
Ball on disk test AT4_41-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 TiN powder injected (AT4_41).
-
Ball on disk test AT3_2-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 TiN powder injected (AT3_2).
-
Ball on disk test AW4_4-Al2O3-r15
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 15 mm. Disk material: Al6061 WC powder injected (AW4_4).
-
Ball on disk test AW4_41-Al2O3-r25
Dane BadawczeHard particle reinforced Al6061 alloy testing. Laser remelting and kinetic injection of particulate material. Ball on disc tribological test. Ball material: Al2O3. Ball diameter: 5 mm. Sliding path radius: 25 mm. Disk material: Al6061 WC powder injected (AW4_41).
-
Personal income tax - tax scales in 1992–2019
Dane BadawczeThe tax rate is the ratio (usually expressed as a percentage) at which a business or person is taxed. There are several methods used to present a tax rate: statory, average, marginal, and effective. These rates can also be presented using different definitions applied to a tax base: inclusive and exclusive.
-
Potential energy surfaces of the low-lying electronic states of the Li+LiCs system
Dane BadawczeThis data presents potential energy surfaces of Li atom interacting with LiCs dimer for the ground and first excited state. They were calculated using effective core potentials and MRCI method and include relativistic effects. The interatomic distance in the dimer is kept constant and equal to experimental value of 6.931704423 bohrs (3.6681 A). Energy...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Study on the Guides Without Borders organization.
Dane BadawczeThe dataset contains responses of a questionnaire study performed with 26 tourist guides involved in the Guides Without Borders organization (in Polsih: Przewodnicy Bez Granic).
-
Description of parameters of symmetrical prolate ellipsoid magnetic signature.
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.