Filtry
wszystkich: 329
wybranych: 165
Filtry wybranego katalogu
Wyniki wyszukiwania dla: speech rate
-
Real-time speech-rate modification experiments
PublikacjaAn algorithm designed for real-time speech time scale modification (stretching) is proposed, providing a combination of typical synchronous overlap and add based time scale modification algorithm and signal redundancy detection algorithms that allow to remove parts of the speech signal and replace them with the stretched speech signal fragments. Effectiveness of signal processing algorithms are examined experimentally together...
-
Methods of Improving Speech Intelligibility for Listeners with Hearing Resolution Deficit
PublikacjaMethods developed for real-time time scale modification (TSM) of speech signal are presented. They are based onthe non-uniform, speech rate depended SOLA algorithm (Synchronous Overlap and Add). Influence of theproposed method on the intelligibility of speech was investigated for two separate groups of listeners, i.e. hearingimpaired children and elderly listeners. It was shown that for the speech with average rate equal to or...
-
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublikacjaText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
Speech codec enhancements utilizing time compression and perceptual coding
PublikacjaA method for encoding wideband speech signal employing standardized narrowband speech codecs is presented as well as experimental results concerning detection of tonal spectral components. The speech signal sampled with a higher sampling rate than it is suitable for narrowband coding algorithm is compressed in order to decrease the amount of samples. Next, the time-compressed representation of a signal is encoded using a narrowband...
-
Examining Influence of Distance to Microphone on Accuracy of Speech Recognition
PublikacjaThe problem of controlling a machine by the distant-talking speaker without a necessity of handheld or body-worn equipment usage is considered. A laboratory setup is introduced for examination of performance of the developed automatic speech recognition system fed by direct and by distant speech acquired by microphones placed at three different distances from the speaker (0.5 m to 1.5 m). For feature extraction from the voice signal...
-
Comparison of Acoustic and Visual Voice Activity Detection for Noisy Speech Recognition
PublikacjaThe problem of accurate differentiating between the speaker utterance and the noise parts in a speech signal is considered. The influence of utilizing a voice activity detection in speech signals on the accuracy of the automatic speech recognition (ASR) system is presented. The examined methods of voice activity detection are based on acoustic and visual modalities. The problem of detecting the voice activity in clean and noisy...
-
Acoustic Sensing Analytics Applied to Speech in Reverberation Conditions
PublikacjaThe paper aims to discuss a case study of sensing analytics and technology in acoustics when applied to reverberation conditions. Reverberation is one of the issues that makes speech in indoor spaces challenging to understand. This problem is particularly critical in large spaces with few absorbing or diffusing surfaces. One of the natural remedies to improve speech intelligibility in such conditions may be achieved through speaking...
-
Comparison of various speech time-scale modificartion methods
PublikacjaThe objective of this work is to investigate the influence of the different time-scale modification (TSM) methods on the quality of the speech stretched up using the designed non-uniform real-time speech time-scale modification algorithm (NU-RTSM). The algorithm provides a combination of the typical TSM algorithm with the vowels, consonants, stutter, transients and silence detectors. Based on the information about the content and...
-
A non-uniform real-time speech time-scale stretching method
PublikacjaAn algorithm for non-uniform real-time speech stretching is presented. It provides a combination of typical SOLA algorithm (Synchronous Overlap and Add ) with the vowels, consonants and silence detectors. Based on the information about the content and the estimated value of the rate of speech (ROS), the algorithm adapts the scaling factor value. The ability of real-time speech stretching and the resultant quality of voice were...
-
Variable Ratio Sample Rate Conversion Based on Fractional Delay Filter
PublikacjaIn this paper a sample rate conversion algorithm which allows for continuously changing resampling ratio has been presented. The proposed implementation is based on a variable fractional delay filter which is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis of fractional delay filters which are designed using the offset window method. The proposed approach allows us to freely...
-
Quality Evaluation of Speech Transmission via Two-way BPL-PLC Voice Communication System in an Underground Mine
PublikacjaIn order to design a stable and reliable voice communication system, it is essential to know how many resources are necessary for conveying quality content. These parameters may include objective quality of service (QoS) metrics, such as: available bandwidth, bit error rate (BER), delay, latency as well as subjective quality of experience (QoE) related to user expectations. QoE is expressed as clarity of speech and the ability...
-
EXAMINING INFLUENCE OF VIDEO FRAMERATE AND AUDIO/VIDEO SYNCHRONIZATION ON AUDIO-VISUAL SPEECH RECOGNITION ACCURACY
PublikacjaThe problem of video framerate and audio/video synchronization in audio-visual speech recogni-tion is considered. The visual features are added to the acoustic parameters in order to improve the accuracy of speech recognition in noisy conditions. The Mel-Frequency Cepstral Coefficients are used on the acoustic side whereas Active Appearance Model features are extracted from the image. The feature fusion approach is employed. The...
-
EXAMINING INFLUENCE OF VIDEO FRAMERATE AND AUDIO/VIDEO SYNCHRONIZATION ON AUDIO-VISUAL SPEECH RECOGNITION ACCURACY
PublikacjaThe problem of video framerate and audio/video synchronization in audio-visual speech recognition is considered. The visual features are added to the acoustic parameters in order to improve the accuracy of speech recognition in noisy conditions. The Mel-Frequency Cepstral Coefficients are used on the acoustic side whereas Active Appearance Model features are extracted from the image. The feature fusion approach is employed. The...
-
Chirp Rate and Instantaneous Frequency Estimation: Application to Recursive Vertical Synchrosqueezing
PublikacjaThis letter introduces new chirp rate and instantaneous frequency estimators designed for frequency-modulated signals. These estimators are first investigated from a deterministic point of view, then compared together in terms of statistical efficiency. They are also used to design new recursive versions of the vertically synchrosqueezed short-time Fourier transform, using a previously published method (D. Fourer, F. Auger, and...
-
Enhanced voice user interface employing spatial filtration of signals from acoustic vector sensor
PublikacjaSpatial filtration of sound is introduced to enhance speech recognition accuracy in noisy conditions. An acoustic vector sensor (AVS) is employed. The signals from the AVS probe are processed in order to attenuate the surrounding noise. As a result the signal to noise ratio is increased. An experiment is featured in which speech signals are disturbed by babble noise. The signals before and after spatial filtration are processed...
-
Estimation of time-frequency complex phase-based speech attributes using narrow band filter banks
PublikacjaIn this paper, we present nonlinear estimators of nonstationary and multicomponent signal attributes (parameters, properties) which are instantaneous frequency, spectral (or group) delay, and chirp-rate (also known as instantaneous frequency slope). We estimate all of these distributions in the time-frequency domain using both finite and infinite impulse response (FIR and IIR) narrow band filers for speech analysis. Then, we present...
-
Metoda i algorytmy modyfikacji sygnału do celu wspomagania rozumienia mowy przez osoby z pogorszoną rozdzielczością czasową słuchu
PublikacjaPrzedmiotem badań przeprowadzonych w ramach rozprawy są metody modyfikacji czasu trwania sygnału (ang. Time Scale Modification –TSM) mowy operujące w czasie rzeczywistym oraz ocena ich wpływu na rozumienie wypowiedzi przez osoby z pogorszoną rozdzielczością czasową słuchu. Pogorszona rozdzielczość słuchu jest jednym z symptomów związanych z ośrodkowymi zaburzeniami słuchu (ang. Cetnral Auditory Processing Disorder – CAPD). W odróżnieniu...
-
English Language Learning Employing Developments in Multimedia IS
PublikacjaIn the realm of the development of information systems related to education, integrating multimedia technologies offers novel ways to enhance foreign language learning. This study investigates audio-video processing methods that leverage real-time speech rate adjustment and dynamic captioning to support English language acquisition. Through a mixed-methods analysis involving participants from a language school, we explore the impact...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublikacjaToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publikacjaconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Analysis of Lombard speech using parameterization and the objective quality indicators in noise conditions
PublikacjaThe aim of the work is to analyze Lombard speech effect in recordings and then modify the speech signal in order to obtain an increase in the improvement of objective speech quality indicators after mixing the useful signal with noise or with an interfering signal. The modifications made to the signal are based on the characteristics of the Lombard speech, and in particular on the effect of increasing the fundamental frequency...
-
Evaluation of Lombard Speech Models in the Context of Speech in Noise Enhancement
PublikacjaThe Lombard effect is one of the most well-known effects of noise on speech production. Speech with the Lombard effect is more easily recognizable in noisy environments than normal natural speech. Our previous investigations showed that speech synthesis models might retain Lombard-effect characteristics. In this study, we investigate several speech models, such as harmonic, source-filter, and sinusoidal, applied to Lombard speech...
-
Improving the quality of speech in the conditions of noise and interference
PublikacjaThe aim of the work is to present a method of intelligent modification of the speech signal with speech features expressed in noise, based on the Lombard effect. The recordings utilized sets of words and sentences as well as disturbing signals, i.e., pink noise and the so-called babble speech. Noise signal, calibrated to various levels at the speaker's ears, was played over two loudspeakers located 2 m away from the speaker. In...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublikacjaThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Improving Objective Speech Quality Indicators in Noise Conditions
PublikacjaThis work aims at modifying speech signal samples and test them with objective speech quality indicators after mixing the original signals with noise or with an interfering signal. Modifications that are applied to the signal are related to the Lombard speech characteristics, i.e., pitch shifting, utterance duration changes, vocal tract scaling, manipulation of formants. A set of words and sentences in Polish, recorded in silence,...
-
Introduction to the special issue on machine learning in acoustics
PublikacjaWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublikacjaWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Applying the Lombard Effect to Speech-in-Noise Communication
PublikacjaThis study explored how the Lombard effect, a natural or artificial increase in speech loudness in noisy environments, can improve speech-in-noise communication. This study consisted of several experiments that measured the impact of different types of noise on synthesizing the Lombard effect. The main steps were as follows: first, a dataset of speech samples with and without the Lombard effect was collected in a controlled setting;...
-
Constructing a Dataset of Speech Recordingswith Lombard Effect
PublikacjaThepurpose of therecordings was to create a speech corpus based on the ISLEdataset, extended with video and Lombard speech. Selected from a set of 165sentences, 10, evaluatedas having thehighest possibility to occur in the context ofthe Lombard effect,were repeated in the presence of the so-called babble speech to obtain Lombard speech features. Altogether,15speakers were recorded, and speech parameterswere...
-
Improved method for real-time speech stretching
Publikacjan algorithm for real-time speech stretching is presented. It was designed to modify input signal dependently on its content and on its relation with the historical input data. The proposed algorithm is a combination of speech signal analysis algorithms, i.e. voice, vowels/consonants, stuttering detection and SOLA (Synchronous-Overlap-and-Add) based speech stretching algorithm. This approach enables stretching input speech signal...
-
Methodology and technology for the polymodal allophonic speech transcription
PublikacjaA method for automatic audiovisual transcription of speech employing: acoustic and visual speech representations is developed. It adopts a combining of audio and visual modalities, which provide a synergy effect in terms of speech recognition accuracy. To establish a robust solution, basic research concerning the relation between the allophonic variation of speech, i.e. the changes in the articulatory setting of speech organs for...
-
Methodology and technology for the polymodal allophonic speech transcription
PublikacjaA method for automatic audiovisual transcription of speech employing: acoustic, electromagnetical articulography and visual speech representations is developed. It adopts a combining of audio and visual modalities, which provide a synergy effect in terms of speech recognition accuracy. To establish a robust solution, basic research concerning the relation between the allophonic variation of speech, i.e., the changes in the articulatory...
-
Detecting Lombard Speech Using Deep Learning Approach
PublikacjaRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
A Novel Method for Intelligibility Assessment of Nonlinearly Processed Speech in Spaces Characterized by Long Reverberation Times
PublikacjaObjective assessment of speech intelligibility is a complex task that requires taking into account a number of factors such as different perception of each speech sub-bands by the human hearing sense or different physical properties of each frequency band of a speech signal. Currently, the state-of-the-art method used for assessing the quality of speech transmission is the speech transmission index (STI). It is a standardized way...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublikacjaThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
Transient detection for speech coding applications
PublikacjaSignal quality in speech codecs may be improved by selecting transients from speech signal and encoding them using a suitable method. This paper presents an algorithm for transient detection in speech signal. This algorithm operates in several frequency bands. Transient detection functions are calculated from energy measured in short frames of the signal. The final selection of transient frames is based on results of detection...
-
Time-domain prosodic modifications for text-to-speech synthesizer
PublikacjaAn application of prosodic speech processing algorithms to Text-To-Speech synthesis is presented. Prosodic modifications that improve the naturalness of the synthesized signal are discussed. The applied method is based on the TD-PSOLA algorithm. The developed Text-To-Speech Synthesizer is used in applications employing multimodal computer interfaces.
-
A survey of automatic speech recognition deep models performance for Polish medical terms
PublikacjaAmong the numerous applications of speech-to-text technology is the support of documentation created by medical personnel. There are many available speech recognition systems for doctors. Their effectiveness in languages such as Polish should be verified. In connection with our project in this field, we decided to check how well the popular speech recognition systems work, employing models trained for the general Polish language....
-
Material for Automatic Phonetic Transcription of Speech Recorded in Various Conditions
PublikacjaAutomatic speech recognition (ASR) is under constant development, especially in cases when speech is casually produced or it is acquired in various environment conditions, or in the presence of background noise. Phonetic transcription is an important step in the process of full speech recognition and is discussed in the presented work as the main focus in this process. ASR is widely implemented in mobile devices technology, but...
-
High quality speech codec employing sines+noise+transients model
PublikacjaA method of high quality wideband speech signal representation employing sines+transients+noise model is presented. The need for a wideband speech coding approach as well as various methods for analysis and synthesis of sines, residual and transient states of speech signal is discussed. The perceptual criterion is applied in the proposed approach during encoding of sines amplitudes in order to reduce bandwidth requirements and...
-
A Method of Real-Time Non-uniform Speech Stretching
PublikacjaDeveloped method of real-time non-uniform speech stretching is presented.The proposed solution is based on the well-known SOLA algorithm(Synchronous Overlap and Add). Non-uniform time-scale modification isachieved by the adjustment of time scaling factor values in accordance with thesignal content. Dependently on the speech unit (vowels/consonants), instantaneousrate of speech (ROS), and speech signal presence, values of the scalingfactor...
-
Mowa nienawiści (hate speech) a odpowiedzialność dostawców usług internetowych w orzecznictwie sądów europejskich
PublikacjaThe article analyses the phenomenon of hate speech in the Internet contrasted with the problem of responsability of Internet Service Providers for cases of such abuses of freedom of expression. The text provides an analysis of jurisprudence of two European Courts. On the one hand it presents the position of the European Court of Human Rights on the problem of hate speech: its definition and the liability for it as an exception...
-
An Attempt to Create Speech Synthesis Model That Retains Lombard Effect Characteristics
PublikacjaThe speech with the Lombard effect has been extensively studied in the context of speech recognition or speech enhancement. However, few studies have investigated the Lombard effect in the context of speech synthesis. The aim of this paper is to create a mathematical model that allows for retaining the Lombard effect. These models could be used as a basis of a formant speech synthesizer. The proposed models are based on dividing...
-
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublikacjaDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
Corrupted speech intelligibility improvement using adaptive filter based algorithm
PublikacjaA technique for improving the quality of speech signals recorded in strong noise is presented. The proposed algorithmemploying adaptive filtration is described and additional possibilities of speech intelligibility improvement arediscussed. Results of the tests are presented.
-
A Study of Cross-Linguistic Speech Emotion Recognition Based on 2D Feature Spaces
PublikacjaIn this research, a study of cross-linguistic speech emotion recognition is performed. For this purpose, emotional data of different languages (English, Lithuanian, German, Spanish, Serbian, and Polish) are collected, resulting in a cross-linguistic speech emotion dataset with the size of more than 10.000 emotional utterances. Despite the bi-modal character of the databases gathered, our focus is on the acoustic representation...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Marking the Allophones Boundaries Based on the DTW Algorithm
PublikacjaThe paper presents an approach to marking the boundaries of allophones in the speech signal based on the Dynamic Time Warping (DTW) algorithm. Setting and marking of allophones boundaries in continuous speech is a difficult issue due to the mutual influence of adjacent phonemes on each other. It is this neighborhood on the one hand that creates variants of phonemes that is allophones, and on the other hand it affects that the border...
-
Weakly-Supervised Word-Level Pronunciation Error Detection in Non-Native English Speech
PublikacjaWe propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced...