Filtry
wszystkich: 5486
-
Katalog
- Publikacje 4510 wyników po odfiltrowaniu
- Czasopisma 165 wyników po odfiltrowaniu
- Konferencje 33 wyników po odfiltrowaniu
- Osoby 250 wyników po odfiltrowaniu
- Projekty 13 wyników po odfiltrowaniu
- Laboratoria 2 wyników po odfiltrowaniu
- Kursy Online 331 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 177 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: MICROWAVE DEVICES DESIGN
-
Low-Cost Design Optimization of Microwave Passives Using Multi-Fidelity EM Simulations and Selective Broyden Updates
PublikacjaGeometry parameters of contemporary microwave passives have to be carefully tuned in the final stages of their design process to ensure the best possible performance. For reliability reasons, the tuning has to be to be carried out at the level of full-wave electromagnetic (EM) simulations. This is because traditional modeling methods are incapable of quantifying certain phenomena that may affect operation and performance of these...
-
Local response surface approximations and variable-fidelity electromagnetic simulations for computationally efficient microwave design optimisation
PublikacjaIn this study, the authors propose a robust and computationally efficient algorithm for simulation-driven design optimisation of microwave structures. Our technique exploits variable-fidelity electromagnetic models of the structure under consideration. The low-fidelity model is optimised using its local response surface approximation surrogates. The high-fidelity model is refined by space mapping with polynomial interpolation of...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublikacjaParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Rapid simulation-driven design of miniaturised dual-band microwave couplers by means of adaptive response scaling
PublikacjaOne of the major challenges in the design of compact microwave structures is the necessity of simultaneous handling of several objectives and the fact that expensive electromagnetic (EM) analysis is required for their reliable evaluation. Design of multi-band circuits where performance requirements are to be satisfied for several frequencies at the same time is even more difficult. In this work, a computationally efficient design...
-
Design and Experimental Validation of a Metamaterial-Based Sensor for Microwave Imaging in Breast, Lung, and Brain Cancer Detection
PublikacjaThis study proposes an innovative geometry of a microstrip sensor for high-resolution microwave imaging (MWI). The main intended application of the sensor is early detection of breast, lung, and brain cancer. The proposed design consists of a microstrip patch antenna fed by a coplanar waveguide with a metamaterial layer-based lens implemented on the back side, and an artificial magnetic conductor (AMC) realized on as a separate...
-
Low-cost multi-criterial design optimization of compact microwave passives using constrained surrogates and dimensionality reduction
PublikacjaDesign of contemporary microwave circuits is a challenging task. Typically, it has to take into account several performance requirements and constraints. The design objectives are often conflicting and their simultaneous improvement may not be possible; instead, compromise solutions are to be sought. Representative examples are miniaturized microwave passives where reduction of the circuit size has a detrimental effect on its electrical...
-
Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: A novel route towards Haemophilus Influenzae pathogen biosensing devices
PublikacjaIn this paper, various passivation schemes were applied at few-layer black phosphorus (FLBP) to achieve covalent functionalisation with 4-azidobenzoic acid, improving its electrochemical response intended for analytical and biosensing applications. The thermal and microwave assisted modification procedures in toluene and dime-thylformamide resulted in high reversibility of reactions on functionalised FLBP using a ferricyanide/ferrocya-nide...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublikacjaPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
An Efficient Framework For Fast Computer Aided Design of Microwave Circuits Based on the Higher-Order 3D Finite-Element Method
PublikacjaIn this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in...
-
Rapid and Reliable Re-Design of Miniaturized Microwave Passives by Means of Concurrent Parameter Scaling and Intermittent Local Tuning
PublikacjaRe-design of microwave passive components for the assumed operating frequencies or substrate parameters is an important yet a tedious process. It requires simultaneous tuning of relevant circuit variables, often over broad ranges thereof, to ensure satisfactory performance of the system. If the operating conditions at the available design are distant from the intended ones, local optimization is typically insufficient, whereas...
-
Expedited Re-Design of Multi-Band Passive Microwave Circuits Using Orthogonal Scaling Directions and Gradient-Based Tuning
PublikacjaGeometry scaling of microwave circuits is an essential but challenging task. In particular, the employment of a given passive structure in a different application area often requires re-adjustment of the operating frequencies/bands while maintaining top performance. Achieving this necessitates utilization of numerical optimization methods. Nonetheless, if the intended frequencies are distant from the ones at the starting point,...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublikacjaDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Knowledge-Based Expedited Parameter Tuning of Microwave Passives by Means of Design Requirement Management and Variable-Resolution EM Simulations
PublikacjaThe importance of numerical optimization techniques has been continually growing in the design of microwave components over the recent years. Although reasonable initial designs can be obtained using circuit theory tools, precise parameter tuning is still necessary to account for effects such as electromagnetic (EM) cross coupling or radiation losses. EM-driven design closure is most often realized using gradient-based procedures,...
-
Design and Microwave-Assisted Synthesis of TiO2-Lanthanides Systems and Evaluation of Photocatalytic Activity under UV-LED Light Irradiation
PublikacjaThe TiO2-Eu and TiO2-La systems were successfully synthesized using the microwave method. Based on the results of X-ray diffraction analysis, it was found that regardless of the analyzed systems, two crystal structures were noted for the obtained samples: anatase and rutile. The analysis, such as XPS and EDS, proved that the doped lanthanum and europium nano-particles are present only on the TiO2 surface without disturbing the...
-
On Rapid Design Optimization and Calibration of Microwave Sensors Based on Equivalent Complementary Resonators for High Sensitivity and Low Fabrication Tolerance
PublikacjaThis paper presents the design, optimization, and calibration of multivariable resonators for mi-crowave dielectric sensors. An optimization technique for circular complementary split ring reso-nator (CC-SRR) and square complementary split ring resonator (SC-SRR) is presented to achieve the required transmission response in a precise manner. The optimized resonators are manufac-tured using a standard photolithographic technique...
-
Inline Microwave Filters With N+1 Transmission Zeros Generated by Frequency-Variant Couplings: Coupling-Matrix-Based Synthesis and Design
PublikacjaA general coupling-matrix-based synthesis methodology for inline Nth-order microwave bandpass filters (BPFs) with frequency-variant reactive-type couplings that generate N+1 transmission zeros (TZs) is presented in this brief. The proposed approach exploits the formulation of the synthesis problem as three inverse nonlinear eigenvalue problems (INEVPs) so that the coupling matrix is built from their sets of eigenvalues. For this...
-
Results and models for Novel high frequency components with non-conventional shape employing smooth geometry deformation of 3D solid with FFD
Dane BadawczeThe project aims to investigate the possibility of developing and manufacturing novel high frequency devices having non-standard geometries, allowing for improved electromagnetic performance over what is achievable with currently available design tools. The non-conventional geometry will be obtained by employing the free-form shape deformation technique...
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublikacjaSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Globalized Parametric Optimization of Microwave Passive Components Using Simplex-Based Surrogates
PublikacjaOptimization-based parameter adjustment involving full-wave electromagnetic (EM) simulation models is a crucial stage of present-day microwave design process. In fact, rigorous optimization is the only reliable mean permitting to simultaneously handle multiple geometry/material parameters, objectives, and constraints. Unfortunately, EM-driven design is a computationally intensive endeavor. While local tuning is usually manageable,...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublikacjaThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublikacjaDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Fast EM-Driven Parameter Tuning of Microwave Circuits with Sparse Sensitivity Updates via Principal Directions
PublikacjaNumerical optimization has become more important than ever in the design of microwave components and systems, primarily as a consequence of increasing performance demands and growing complexity of the circuits. As the parameter tuning is more and more often executed using full-wave electromagnetic (EM) models, the CPU cost of the overall process tends to be excessive even for local optimization. Some ways of alleviating these issues...
-
Rafał Lech dr hab. inż.
OsobyIEEE Senior Member #92122578 Rafał Lech urodził się w Elblągu w 1977 roku. W roku 2001 otrzymał tytuł magistra inżyniera, w roku 2007 stopień doktora nauk technicznych (z wyróżnieniem) a w roku 2018 stopień doktora habilitowanego nauk technicznych w dyscyplinie elektronika w Politechnice Gdańskiej. Obecnie pracuje w Katedrze Inżynierii Mikrofalowej i Antenowej na Wydziale Elektroniki, Telekomunikacji i Informatyki w Politechnike...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublikacjaDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublikacjaContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublikacjaThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublikacjaThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublikacjaDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Computationally-Efficient Statistical Design and Yield Optimization of Resonator-Based Notch Filters Using Feature-Based Surrogates
PublikacjaModern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect...
-
Adrian Bekasiewicz dr hab. inż.
OsobyAdrian Bekasiewicz received the MSc, PhD, and DSc degrees in electronic engineering from Gdansk University of Technology, Poland, in 2011, 2016, and 2020, respectively. In 2014, he joined Engineering Optimization & Modeling Center where he held a Research Associate and a Postdoctoral Fellow positions, respectively. Currently, he is an Associate Professor with Gdansk University of Technology, Poland. His research interests include...
-
On Decision-Making Strategies for Improved-Reliability Size Reduction of Microwave Passives: Intermittent Correction of Equality Constraints and Adaptive Handling of Inequality Constraints
PublikacjaDesign optimization of passive microwave components is an intricate process, especially if the primary objective is a reduction of the physical size of the structure. The latter has become an important design consideration for a growing number of modern applications (mobile communications, wearable/implantable devices, internet of things), where miniaturization is imperative due to a limited space allocated for the electronic circuitry....
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublikacjaDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Comparing traffic intensity estimates employing passive acoustic radar and microwave Doppler radar sensor
PublikacjaThe purpose of our applied research project is to develop an autonomous road sign with built-in radar devices of our design. In this paper, we show that it is possible to calibrate the acoustic vector sensor so that it can be used to measure traffic volume and count the vehicles involved in the traffic through the analysis of the noise emitted by them. Signals obtained from a Doppler radar are used as a reference source. Although...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublikacjaUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Dispersive Delay Structures With Asymmetric Arbitrary Group-Delay Response Using Coupled-Resonator Networks With Frequency-Variant Couplings
PublikacjaThis article reports the design of coupled-resonatorbased microwave dispersive delay structures (DDSs) with arbitrary asymmetric-type group delay response. The design process exploits a coupling matrix representation of the DDS circuit as a network of resonators with frequency-variant couplings (FVCs). The group delay response is shaped using complex transmission zeros (TZs) created by dispersive cross-couplings. We also present an...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublikacjaData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Direct Constraint Control for EM-Based Miniaturization of Microwave Passives
PublikacjaHandling constraints imposed on physical dimensions of microwave circuits has become an important design consideration over the recent years. It is primarily fostered by the needs of emerging application areas such as 5G mobile communications, internet of things, or wearable/implantable devices. The size of conventional passive components is determined by the guided wavelength, and its reduction requires topological modifications,...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublikacjaApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Local mesh morphing technique for parametrized macromodels in the finite element method
PublikacjaThis paper presents a novel approach for enhancing the efficiency of the design process of microwave devices by means of the finite element method. It combines mesh morphing with local model order reduction (MOR) and yields parametrized macromodels that can be used to significantly reduce the number of variables in the FEM system of equations and acceleration of computer simulation. A projection basis for local reduction is generated...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublikacjaUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
Włodzimierz Zieniutycz prof. dr hab. inż.
Osoby -
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublikacjaThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Parametrized Local Reduced-Order Models With Compressed Projection Basis for Fast Parameter-Dependent Finite-Element Analysis
PublikacjaThis paper proposes an automated parametric local model-order reduction scheme for the expedited design of microwave devices using the full-wave finite-element method (FEM). The approach proposed here results in parameterized reduced-order models (ROMs) that account for the geometry and material variation in the selected subregion of the structure. In each subregion, a parameter-dependent projection basis is generated by concatenating...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublikacjaSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
Algoritmically improved microwave radar monitors breathing more acurrate than sensorized belt
PublikacjaThis paper describes a novel way to measure, process, analyze, and compare respiratory signals acquired by two types of devices: a wearable sensorized belt and a microwave radar-based sensor. Both devices provide breathing rate readouts. First, the background research is presented. Then, the underlying principles and working parameters of the microwave radar-based sensor, a contactless device for monitoring breathing, are described....
-
Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness
PublikacjaThis paper presents a novel complementary resonator featuring high sensitivity, low fabrication cost, and improved performance. The proposed structure consists of a complementary concentric square and circular ring resonator (CCSCRR) with multiple splits to enhance the inductance of the resonator. The proposed CCSCRR is coupled to a microstrip transmission line with an impedance of fifty ohms to create a high-sensitivity sensor....
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublikacjaAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
Piotr Sypek dr inż.
OsobyPiotr Sypek otrzymał w Politechnice Gdańskiej tytuł magistra inżyniera w 2003 roku oraz stopień doktora nauk technicznych (z wyróżnieniem) w 2012 roku. Obecnie pracuje w Katedrze Inżynierii Mikrofalowej i Antenowej na Wydziale Elektroniki, Telekomunikacji i Informatyki w Politechnice Gdańskiej. Jego działalność badawcza zawiera projektowanie i implementację równoległych algorytmów stosowanych do budowania i wyznaczania rozwiązywania...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublikacjaData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...