Wyniki wyszukiwania dla: neural modelling
-
Neural Modelling of Steam Turbine Control Stage
PublikacjaThe paper describes possibility of steam turbine control stage neural model creation. It is of great importance because wider application of green energy causes severe conditions for control of energy generation systems operation Results of chosen steam turbine of 200 MW power measurements are applied as an example showing way of neural model creation. They serve as training and testing data of such neural model. Relatively simple...
-
Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm
PublikacjaA problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...
-
Neural network modelling of the influence of channelopathies on reflex visual attention
Publikacja -
Applying artificial neural networks for modelling ship speed and fuel consumption
PublikacjaThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublikacjaIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublikacjaA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Modelling changes in the energy efficiency of buildings using neural networks on the example of Zielona Góra
Publikacja -
Wind-wave variability in a shallow tidal sea—Spectral modelling combined with neural network methods
Publikacja -
Modelling of a medium-term dynamics in a shallow tidal sea, based on combined physical and neural network methods
Publikacja -
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublikacjaOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Modelling relation between oxidation resistance and tribological properties of non-toxic lubricants with the use of artificial neural networks
Publikacja -
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publikacja -
Olgun Aydin dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Application of spatial neural simulators of turbine blade rows to fluid flow diagnostics
PublikacjaThis chapter presents the results of neural modelling of fluid flow in steam turbine row. In modelling working conditions of the flow channel varied, thus the aim of the work was to reconstruct the reference state - distributions of velocity, pressure, and losses in flow channel - with high accuracy for fluid flow diagnostics.
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION
PublikacjaIn marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...
-
Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
PublikacjaMost of industrial processes are nonlinear, not stationary, and dynamical with at least few different time scales in their internal dynamics and hardly measured states. A biological wastewater treatment plant falls into this category. The paper considers modelling such processes for monitorning and control purposes by using State - Space Wavelet Neural Networks (SSWN). The modelling method is illustrated based on bioreactors of...
-
Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements
PublikacjaThis article presents the process of the construction and testing a remote, fully autonomous system for measuring the operational parameters of fans. The measurement results obtained made it possible to create and verify mathematical models using linear regression and neural networks. The process was implemented as part of the first stage of an innovative project. The article presents detailed steps of constructing a system to...
-
On a Method of Efficiency Increasing in Kaplan Turbine
PublikacjaThis paper presents a method of increasing efficiency in Kaplan-type turbine. The method is based on blade profile optimisation together with modelling the interaction between rotor and stator blades. Loss coefficient was chosen as the optimisation criterion, which is related directly to efficiency. Global optimum was found by means of Genetic Algorithms, and Artificial Neural Networks were utilised for approximations to reduce...
-
Self-Organising map neural network in the analysis of electromyography data of muscles acting at temporomandibular joint.
PublikacjaThe temporomandibular joint (TMJ) is the joint that via muscle action and jaw motion allows for necessary physiological performances such as mastication. Whereas mandible translates and rotates [1]. Estimation of activity of muscles acting at the TMJ provides a knowledge of activation pattern solely of a specific patient that an electromyography (EMG) examination was carried out [2]. In this work, a Self-Organising Maps (SOMs)...
-
A Method for Optimising the Blade Profile in Kaplan Turbine
PublikacjaThis paper introduces a method of blade profile optimisation for Kaplan-type turbines, based on modelling the interaction between rotor and stator blades. Rotor and stator blade geometry is described mathematically by means of a midline curve and thickness distribution. Genetic algorithms are then used to find a global optimum that minimises the loss coefficient. This allows for variety of possible blade shapes and configurations....
-
Shape Optimisation of Kaplan Turbine Blades Using Genetic Algorithms
PublikacjaThis monograph is a comprehensive guide to a method of blade profile optimisation for Kaplan-type turbines. This method is based on modelling the interaction between rotor and stator blades. Additionally, the shape of the draft tube is investigated. The influence of the periodic boundary condition vs. full geometry is also discussed. Evolutionary algorithms (EA) are used as an optimisation method together with artificial neural...
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublikacjaThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
Paweł Burdziakowski dr inż.
Osobydr inż. Paweł Burdziakowski jest specjalista w zakresie fotogrametrii i teledetekcji lotniczej niskiego pułapu, nawigacji morskiej i lotniczej. Jest również licencjonowanym instruktorem lotniczym oraz programistą. Głównymi obszarami zainteresowania jest fotogrametria cyfrowa, nawigacja platform bezzałogowych oraz systemy bezzałogowe, w tym lotnicze, nawodne, podwodne. Prowadzi badania w zakresie algorytmów i metod poprawiających...
-
Olgun Aydin Dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...
-
Vehicle Detection with Self-Training for Adaptative Video Processing Embedded Platform
PublikacjaTraffic monitoring from closed-circuit television (CCTV) cameras on embedded systems is the subject of the performed experiments. Solving this problem encounters difficulties related to the hardware limitations, and possible camera placement in various positions which affects the system performance. To satisfy the hardware requirements, vehicle detection is performed using a lightweight Convolutional Neural Network (CNN), named...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine in unsteady states
PublikacjaContemporary engine tests are performed based on the theory of experiment. The available versions of programmes used for analysing experimental data make frequent use of the multiple regression model, which enables examining effects and interactions between input model parameters and a single output variable. The use of multi-equation models provides more freedom in analysing the measured results, as those models enable simultaneous...
-
Collective citizens' behavior modelling with support of the Internet of Things and Big Data
PublikacjaIn this paper, collective human behaviors are modelled by a development of Big Data mining related to the Internet of Things. Some studies under MapReduce architectures have been carried out to improve an efficiency of Big Data mining. Intelligent agents in data mining have been analyzed for smart city systems, as well as data mining has been described by genetic programming. Furthermore, artificial neural networks have been discussed...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublikacjaTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Australian Conference on Neural Networks
Konferencje -
International Symposium on Neural Networks
Konferencje -
World Congress on Neural Networks
Konferencje -
Numerical Modelling for Prediction of Compression Index from Soil Index Properties in Jimma town, Ethiopia
PublikacjaIn this study, correlations are developed to predict compression index (Cc) from index parameters so that one can be able to model Jimma soils with compression index using simple laboratory tests. Undisturbed and disturbed soil samples from twelve different locations in Jimma town were collected. Laboratory tests like specific gravity, grain size analysis, Atterberg limit, and one-dimensional consolidation test for a total of twenty-four...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine for the evaluation of its structure parameters
PublikacjaThe paper presents the possibility of using an analytical study of the engine exhaust ignition to evaluate the technical condition of the selected components. Software tools available for the analysis of experimental data commonly use multiple regression model that allows the study of the effects and iterations between model input quantities and one output variable. The use of multi-equation models gives a lot of freedom in the...
-
Advances in Neural Information Processing Systems (Advances in Neural Information Processing Systems [NIPS])
Konferencje -
Artificial Neural Networks in Engineering Conference
Konferencje -
European Symposium on Artificial Neural Networks
Konferencje -
IEEE International Conference on Neural Networks
Konferencje -
International Conference on Artificial Neural Networks
Konferencje -
International Conference on Neural Information Processing
Konferencje -
IEEE International Joint Conference on Neural Networks
Konferencje -
Conference on Artificial Neural Networks and Expert systems
Konferencje -
International Conference on Engineering Applications of Neural Networks
Konferencje -
International Conference on Neural, Parallel and Scientific Computations
Konferencje -
IEEE International Symposium on Intelleligence in Neural & Biological Systems
Konferencje -
International Conference on Artificial Neural Networks and Genetic Algorithms
Konferencje -
International Work-Conference on Artificial and Natural Neural Networks
Konferencje -
IEEE International Workshop on Neural Networks for Signal Processing
Konferencje -
Early warning models against bankruptcy risk for Central European and Latin American enterprises
PublikacjaThis article is devoted to the issue of forecasting the bankruptcy risk of enterprises in Latin America and Central Europe. The author has used statistical and soft computing methods to program the prediction models. It compares the effectiveness of twelve different early warningmodels for forecasting the bankruptcy risk of companies. In the research conducted, the author used data on 185 companies listed on the Warsaw Stock Exchange...