Filters
total: 3130
filtered: 416
-
Catalog
- Publications 1458 available results
- Journals 7 available results
- People 63 available results
- Inventions 14 available results
- Projects 1 available results
- Laboratories 3 available results
- Research Teams 2 available results
- Research Equipment 13 available results
- e-Learning Courses 75 available results
- Events 107 available results
- Open Research Data 1387 available results
Chosen catalog filters
Search results for: OSOBY W WIEKU 50 LAT I WIĘCEJ
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
FTIR spectra of gas mixtures from the methanation chamber filled with 50-50wt.% NiO-Al2O3
Open Research DataThe dataset includes the FTIR spectra collection of the outlet gas mixtures (CO2, CO, CH4) from reactor chamber filled with 50/50 wt.% NiO-Al2O3 catalyst for perfoming methanation reaction. The inlet gas mixture was composed of 3:1 by vol. H2:CO. Spectra were collected using PerkinElmer FTIR every 1 min.
-
FTIR spectra of gas mixtures from the methanation chamber filled with 50-50wt.% NiO-GDC
Open Research DataThe dataset includes the FTIR spectra collection of the outlet gas mixtures (CO2, CO, CH4) from reactor chamber filled with 50/50 wt.% NiO-GDC (Gadolinia Doped Ceria 20mol.%Gd2O3) catalyst for perfoming methanation reaction. The inlet gas mixture was composed of 3:1 by vol. H2:CO. Spectra were collected using PerkinElmer FTIR every 1 min.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
The structure of 50(2Bi2O3-V2O5)-50SrB4O7 measured with X-ray diffraction method during heating
Open Research DataThe structure changes of 50(2Bi2O3-V2O5)-50SrB4O7 glass occurred during increase in temperature was measured by XRD.
-
Calibration of NTC 10k thermistors in temperature of 50 C
Open Research DataThe presented data set is part of the research aimed at determining the actual characteristics of each thermistor in a package of twenty NTC10k type sensors.
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 50 um (serie 1)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement with the low coherent interferometer with silver mirror (the source wavelegth 1310 nm) - 50 um (serie 2)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass measured with impedance spectroscopy method
Open Research DataThe linear electrcial properties as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass was measured by impedance spectroscopy method.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
The topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with AFM
Open Research DataThe topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with AFM.
-
The topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with confocal microscope
Open Research DataThe topography of as-quenched and heat treated 50(2Bi2O3-V2O5)-50SrB4O7 and 50Bi2VO5.5-50SrB4O7 glasses measured with confocal microscope.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at low temperatures
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at low temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
WRF-METEOPG: numerical weather forecast data for Poland - Days 50-56, Year 2021
Open Research DataWRF-METEOPG is a numerical weather forecast system developed at the Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland. The system was built on the basis of the Weather Research and Forecast model version 4.2 and implemented at Centre of Informatics Tricity Academic Supercomputer & Network. Physics parametrization...
-
Linear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K was measured by impedance spectroscopy method.
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in -50°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
EH36 steel for shipbuilding (plate thicnkness 50 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at 273 K
Open Research DataThe linear electrcial properties as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Mechanical properties of VL E27 steel for shipbuilding – impact in test -50°C, 3D model of fracture
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Magnetic field maps of an astable multivibrator in frequency range from 100 kHz to 50 MHz
Open Research DataThe data presents a result of near field measurements of electromagnetic emissions radiated from the PCB of a small electronic device. An efficient method of modelling the magnetic and electric field emissions is the measurements in the near field using electric and magnetic probes. The attached files contain magnetic field maps created on based measurements...
-
Linear impedance as a function of A.C. voltage for 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe linear electrcial properties as a function of A.C. voltage of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 813 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times measured with impedance spectroscopy method at high temperature region
Open Research DataThe nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated two times was measured by impedance spectroscopy method.
-
Calculations of the resistance values of 20 thermistors at 50°C
Open Research DataThe presented data set is part of the research aimed at determining the actual characteristics of each thermistor in a package of twenty NTC10k type sensors.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 813 K measured with impedance spectroscopy method at high temperature region
Open Research DataNonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 813 K was measured by impedance spectroscopy method.
-
Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat-treated at 613 K measured with impedance spectroscopy method at high temperature region
Open Research DataNonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass-ceramic heat treated at 613 K was measured by impedance spectroscopy method.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.