Filters
total: 9348
filtered: 6043
-
Catalog
- Publications 6043 available results
- Journals 152 available results
- Conferences 101 available results
- People 160 available results
- Inventions 1 available results
- Projects 8 available results
- Laboratories 1 available results
- e-Learning Courses 207 available results
- Events 23 available results
- Open Research Data 2652 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: DATA-DRIVEN TECHNIQUES
-
Fundamentals of Data-Driven Surrogate Modeling
PublicationThe primary topic of the book is surrogate modeling and surrogate-based design of high-frequency structures. The purpose of the first two chapters is to provide the reader with an overview of the two most important classes of modeling methods, data-driven (or approx-imation), as well as physics-based ones. These are covered in Chap-ters 1 and 2, respectively. The remaining parts of the book give an exposition of the specific aspects...
-
Dis/Trust and data-driven technologies
PublicationThis concept paper contextualises, defines, and systematises the concepts of trust and distrust (and their interrelations), providing a critical review of existing literature so as to identify gaps, disjuncture, and continuities in the use of these concepts across the social sciences and in the context of the consolidation of the digital society. Firstly, the development of the concept of trust is explored by looking at its use...
-
Multilevel pharmacokinetics-driven modeling of metabolomics data
Publication -
Sensor data fusion techniques for environment modelling
Publication -
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublicationData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Using wavelet techniques for multibeam sonar bathymetry data compression
PublicationMultibeam sonars are widely used in applications like high resolution bathymetry measurements or underwater object imaging. One of the significant problems in multibeam sensing of the marine environment is large amount of data which must be transmitted from the sonar processing unit to an operator station using a limited bit rate channel. For instance, such a situation would be in the case when the multibeam sonar was mounted on...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublicationFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
Application of mechanistic and data-driven models for nitrogen removal in wastewater treatment systems
PublicationIn this dissertation, the application of mechanistic and data-driven models in nitrogen removal systems including nitrification and deammonification processes was evaluated. In particular, the influential parameters on the activity of the Nitrospira activity were assessed using response surface methodology (RSM). Various long-term biomass washout experiments were operated in two parallel sequencing batch reactor (SBR) with a different...
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublicationRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Towards High-Value Datasets Determination for Data-Driven Development: A Systematic Literature Review
PublicationOpen government data (OGD) is seen as a political and socio-economic phenomenon that promises to promote civic engagement and stimulate public sector innovations in various areas of public life. To bring the expected benefits, data must be reused and transformed into value-added products or services. This, in turn, sets another precondition for data that are expected to not only be available and comply with open data principles,...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publication -
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Overcoming “Big Data” Barriers in Machine Learning Techniques for the Real-Life Applications
Publication -
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublicationTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Wide-band modulation and adaptive equalization techniques for fast and reliable underwater data transmission.
PublicationSzybkość transmisji w płytkim kanale podwodnym jest ograniczona ze względu na wielokrotne odbicia fal dźwiękowych oraz niestacjonarność kanału. Dla zapewnienia szybkiej i niezawodnej transmisji danych w systemach komunikacji stosowane są złożone techniki modulacji oraz equalizacji kanału. W artykule zaproponowano zastosowanie modulacji OFDM oraz equalizacji adaptacyjnej w systemie komunikacji podwodnej. Modulacja OFDM stosowana...
-
Application of data driven methods in diagnostic of selected process faults of nuclear power plant steam turbine
PublicationArticle presents a comparison of process anomaly detection in nuclear power plant steam turbine using combination of data driven methods. Three types of faults are considered: water hammering, fouling and thermocouple fault. As a virtual plant a nonlinear, dynamic, mathe- matical steam turbine model is used. Two approaches for fault detection using one class and two class classiers are tested and compared.
-
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublicationKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....
-
Identification of High-Value Dataset determinants: is there a silver bullet for efficient sustainability-oriented data-driven development?
PublicationOpen Government Data (OGD) are seen as one of the trends that has the potential to benefit the economy, improve the quality, efficiency, and transparency of public administration, and change the lives of citizens, and the society as a whole facilitating efficient sustainability-oriented data-driven services. However, the quick achievement of these benefits is closely related to the “value” of the OGD, i.e., how useful, and reusable...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublicationData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
O-43 Data-driven selection of active iEEG channels during verbal memory task performance
Publication -
Data-driven models for fault detection using kernel PCA: A water distribution system case study
Publication -
Influence of input data on airflow network accuracy in residential buildings with natural wind - and stack - driven ventilation.
PublicationW artykule omówiono wpływ danych wejściowych na dokładność modelu przepływu sieciowego powietrza w budynkach mieszkalnych z naturalną i kominową wentylacją. Zastosowano połączony model AFN-BES. Wyniki numeryczne omówiono dla 8 różnych przypadków z różnymi danymi ciśnienia wiatru. Wyniki pokazały, że ogromny wpływ danych wejściowych dotyczących ciśnienia wiatru na wyniki numeryczne.
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
NLITED - New Level of Integrated Techniques for Daylighting Education: Preliminary Data on the Use of an E-learning Platform
PublicationProject NLITED – New Level of Integrated Techniques for Daylighting Education - is an educational project for students and professionals. The project's objective is to create and develop an online eLearning platform with 32 eModules dedicated to daylight knowledge. The project also offers e-learners two summer school training where the theory is put into practice. The platform was launched on January 31, 2022. The paper...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
An Approach to Data Reduction for Learning from Big Datasets: Integrating Stacking, Rotation, and Agent Population Learning Techniques
Publication -
Computer vision techniques applied for reconstruction of seafloor 3D images from side scan and synthetic aperture sonars data
PublicationThe Side Scan Sonar and Synthetic Aperture Sonar are well known echo signal processing technologies that produce 2D images of the seafloor. Both systems combines a number of acoustic pings to form a high resolution image of seafloor. It was shown in numerous papers that 2D images acquired by such systems can be transformed into 3D models of seafloor surface by algorithmic approach using intensity information, contained in a grayscaled...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Size Reduction of Microwave Couplers by EM-Driven Optimization
PublicationThis work addresses simulation-driven design optimization of compact microwave couplers that explicitly aims at circuit footprint area reduction. The penalty function approach allows us to minimize the area of the circuit while ensuring a proper power division between the output ports and providing a sufficient bandwidth with respect to return loss and isolation around the operating frequency. Computational cost of the optimization...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublicationCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
Knowledge management driven leadership, culture and innovation success – an integrative model
PublicationPurpose – This article examines the relation between knowledge management (KM) driven leadership, culture and innovation success of knowledge-intensive small and medium sized companies. By building on the previously reported research on leadership, culture, innovation, and knowledge management, we synergistically integrated KM-driven leadership and innovation success while exploring the meditational role of culture in that. Design/methodology/approach...
-
Cost‐efficient performance‐driven modelling of multi‐band antennas by variable‐fidelity electromagnetic simulations and customized space mapping
PublicationElectromagnetic (EM) simulations have become an indispensable tool in the design of contemporary antennas. EM‐driven tasks, for example, parametric optimization, entail considerable computational efforts, which may be reduced by employing surrogate models. Yet, data‐driven modelling of antenna characteristics is largely hindered by the curse of dimensionality. This may be addressed using the recently reported domain‐confinement...
-
Knowledge-based performance-driven modeling of antenna structures
PublicationThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublicationFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Simulation-Driven Antenna Modeling by Means of Response Features and Confined Domains of Reduced Dimensionality
PublicationIn recent years, the employment of full-wave electromagnetic (EM) simulation tools has become imperative in the antenna design mainly for reliability reasons. While the CPU cost of a single simulation is rarely an issue, the computational overhead associated with EM-driven tasks that require massive EM analyses may become a serious bottleneck. A widely used approach to lessen this cost is the employment of surrogate models, especially...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublicationUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublicationDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Three-objective antenna optimization by means of kriging surrogates and domain segmentation
PublicationIn this paper, an optimization framework for multi-objective design of antenna structures is discussed which exploits data-driven surrogates, a multi-objective evolutionary algorithm, response correction techniques for design refinement, as well as generalized domain segmentation. The last mechanism is introduced to constrain the design space region subjected to sampling, which permits reduction of the number of training data samples...